

OBG | There's a way

February 5, 2016

### Mr. John Osolin

Remedial Project Manager Emergency and Remedial Response Division United States Environmental Protection Agency – Region 2 290 Broadway, 19th Floor New York, NY 10007-1866

### Mr. Raymond Souweha

Case Manager
New Jersey Department of Environmental Protection
401 E. State Street
Mailcode 401-05F
P.O. Box 420
Trenton, NJ 08625-0420

RE: Remedial Action for Operable Unit 3 (OU3) – Site Groundwater
Injection Event #2/Post-Injection Monitoring Report
Evor Phillips Leasing Company Superfund Site
Old Bridge Township, Middlesex County, New Jersey (Program Interest #G000004877, EPA
ID #NJD980654222)

FILE: 19726 / 51308

Dear Mr. Osolin and Mr. Souweha:

On behalf of the Evor Phillips Leasing Company Superfund Site Settling Defendants (Group), O'Brien & Gere (OBG) has prepared this in-situ chemical oxidation (ISCO) Injection Event #2/Post-Injection Monitoring Report for the Remedial Action for Operable Unit 3 (OU3) – Site Groundwater at the Evor Phillips Leasing Company (EPLC) Superfund Site (Site) in Old Bridge, New Jersey. A Site Location Map is provided as **Figure 1**, and a Site Plan with well locations is provided as **Figure 2**.

The first ISCO injection event was completed in February/March 2014, followed by four groundwater performance monitoring events in accordance with the EPA-approved Remedial Design Report (RDR) / Remedial Action Work Plan (RAWP). Injections were completed for the two treatment areas (Treatment Area 1 and Treatment Area 2) as identified in the RDR/RAWP. The results were documented in the Injection Event #1/Post-Injection Monitoring Report (OBG, November 2014). The second ISCO injection event was completed June 1-11 2015, followed by four groundwater performance monitoring events in accordance with the 2015 Annual/Baseline Groundwater Monitoring Event Summary and Injection Event #2 Treatment Recommendations Summary (approved by EPA/NJDEP on May 27, 2015). A layout of the ISCO injection point (IP) network for the two treatment areas for both injection events is included as Figure 3. The four groundwater performance monitoring events were completed as follows:

- 1st Post-Injection Event #2 Monitoring Event July 22-23, 2015 (approximately 6 weeks following injections)
- 2<sup>nd</sup> Post-Injection Event #2 Monitoring Event September 15-16, 2015 (approximately 3 months following injections)







- 3<sup>rd</sup> Post-Injection Event #2 Monitoring Event October 15-16, 2015 (approximately 4 months following injections)
- 4th Post-Injection Event #2 Monitoring Event November 11-12, 2015 (approximately 5 months following injections)

The following sections of this letter report present the details of the second round of ISCO injections, post-injection groundwater sampling activities/results, and recommendations for remedial program, outlined as follows:

|  | Treatment Area 1 ISCO Injections | pg. 2 |
|--|----------------------------------|-------|
|--|----------------------------------|-------|

- Treatment Areas 2 ISCO Injections
   pg. 3
- Post-Injection Groundwater Performance Sampling pg. 3
- Recommendations for the Remedial Program pg. 7

### TREATMENT AREA 1 ISCO INJECTIONS

The Event #2 full-scale injections were completed in Treatment Area 1 on June 4-11, 2015. Previous injection testing performed during the 1<sup>st</sup> round of injections in February/March 2014 indicated effective base activated sodium persulfate (BASP) delivery into the subsurface using the injection volumes/dosage and injection point (IP) spacing as described in the Injection Event #1/Post-Injection Monitoring Report (OBG, Nov. 2014). Therefore, Injection Event #2 volumes/dosage and IP spacing remained consistent with those used for Injection Event #1. Reagent volumes of approximately 800 gallons of 5% (50 g/L) persulfate and 3 lbs of 25% sodium hydroxide (NaOH)/lb of sodium persulfate were injected into each IP at a targeted 5-foot depth interval (refer to Figure 3 for specific injection depths at each IP). Treatment Area 1 consisted of 52 IPs (one injection interval at each IP), consistent with Injection Event #1.

Temporary IPs were installed using direct-push methods by Environmental Probing Investigations, Inc. (EPI), an NJDEP licensed driller. A stainless steel temporary well screen sealed within a steel sheath was advanced to the appropriate injection interval. The outer steel sheath was retracted, exposing the inner well screen. BASP was pumped from the surface, through the drilling rods and into the subsurface. Upon completion of each IP, the tooling was removed and decontaminated. Each borehole was sealed with bentonite.

Injections were generally completed from the south of the treatment area to the north, alternating between points to mitigate the potential for groundwater / solution surfacing ("daylighting"). BASP pumping rates were sustained at 4-8 gallons per minute (gpm) with low back-pressure (0-40 pounds per square inch [psi]), and no surfacing of BASP was observed throughout the injections in Treatment Area 1, indicating effective solution delivery to the subsurface. Injections for each IP required approximately 2-3 hours to complete. **Attachment 1** provides the injection schedule/volumes for each IP in Treatment Area 1.

At various times during the injections, monitoring wells ISCO-MW-2, ISCO-MW-3, ISCO-MW-7, ISCO-MW-8, ISCO-MW-9, IW1-BT-2, and ISCO-MW-4 (downgradient) in Treatment Area 1 were monitored for field parameters (i.e., pH, conductivity, etc.) and persulfate. **Attachment 1** provides the process monitoring results for these wells during and following the Treatment Area 1 injections, including the pH and persulfate trends.

Elevated pH and persulfate readings were exhibited in the monitoring wells within Treatment Area 1 during and/or following injections. The elevated pH/persulfate readings were less pronounced in ISCO-MW-9, likely due to the location of this well near the upgradient perimeter of the treatment area. The groundwater process monitoring results for Treatment Area 1 indicate that the oxidant was effectively distributed throughout the



treatment area. No elevated pH and persulfate readings were observed in the downgradient well (ISCO-MW-4), indicating that the injected oxidant remained within the treatment area.

### TREATMENT AREA 2 ISCO INJECTIONS

The Event #2 full-scale injections were completed in Treatment Area 2 on June 1-5, 2015. Consistent with the Annual/Baseline Groundwater Monitoring Event Summary and Injection Event #2 Treatment Recommendations Summary (approved by EPA/NJDEP on May 27, 2015), thirteen (13) IPs with a total of thirty-nine (39) 5-foot injection intervals were completed in the vicinity of ISCO-MW-5 within Treatment Area 2 (a reduction from forty-two [42] IPs completed during Injection Event #1). Consistent with Treatment Area 1, reagent volumes of approximately 800 gallons of 5% (50 g/L) persulfate and 3 lbs of 25% sodium hydroxide (NaOH)/lb of sodium persulfate were injected into each IP at the targeted 5-foot depth intervals (refer to Figure 3 for specific injection depths at each IP).

Temporary IPs were installed using direct-push methods by EPI. A stainless steel temporary well screen sealed within a steel sheath was advanced to the appropriate injection interval (bottom 5-foot interval initially). The outer steel sheath was retracted, exposing the inner well screen. BASP was pumped from the surface, through the drilling rods and into the subsurface. The same process was repeated for other intervals. Upon completion of each IP (three injection intervals), the tooling was removed and decontaminated. Each borehole was sealed with bentonite.

Injections were generally completed from the west to the east of the limited treatment area. BASP pumping rates were sustained at 4-8 gpm with low/moderate back-pressure (0-40 psi), and no surfacing of BASP was observed throughout the injections in Treatment Area 2, indicating effective solution delivery to the subsurface. The injections at each interval in the IPs were completed in approximately 2-3 hours. **Attachment 2** provides the injection schedule/volumes for each IP in Treatment Area 2.

Consistent with the approved Phase 2 program, monitoring well ISCO-MW-5 in Treatment Area 2 was sampled for field parameters (i.e., pH, conductivity, etc.) and persulfate regularly throughout the ISCO injections. Attachment 2 provides the process monitoring results for ISCO-MW-5 during and following the Treatment Area 2 injections, including the pH and persulfate trends. ISCO-MW-5 exhibited elevated pH/persulfate readings indicating effective oxidant distribution throughout this portion of Treatment Area 2.

### POST-INJECTION GROUNDWATER PERFORMANCE SAMPLING

### **SAMPLING ACTIVITIES**

In accordance with the Annual/Baseline Groundwater Monitoring Event Summary and Injection Event #2 Treatment Recommendations Summary (approved by EPA/NJDEP on May 27, 2015), four performance groundwater monitoring events were completed at approximately 6 weeks (1.5 months), 12 weeks (3 months), 4 months, and 5 months following the completion of the second round of ISCO injections. Groundwater samples were collected at ten (10) wells (ISCO-MW-2, ISCO-MW-3, ISCO-MW-4, ISCO-MW-5, ISCO-MW-7, ISCO-MW-8, ISCO-MW-9, IW1-BT-2, MW-14S, and MW-10S). Samples were collected from two five-foot intervals within the ten-foot screen interval at MW-14S (refer to the RDR/RAWP). In addition, the remaining Treatment Area 2 wells located in the vicinity of areas that were previously treated during the first round of injections (ISCO-MW-1, ISCO-MW-6, and PZ-1S) and three upgradient wells (MW-5I, MW-11I, and IW-DR-1) were sampled during the 4<sup>th</sup> post-Injection Event #2 groundwater monitoring event (5 months following injections).

Wells were sampled using low-flow sampling methods in accordance with the RDR/RAWP and groundwater samples were collected and submitted to Accutest Laboratories, Inc. of Dayton, New Jersey (New Jersey Certification #12129) for analysis for the following parameters:



- Volatile organic compounds (VOCs) (Target Compound List, SW846 8260)
- Total dissolved solids (SM 2540C)
- Sulfate (EPA 300)
- Metals (total/dissolved chromium, dissolved iron, sodium SW846 6010)

Groundwater low-flow sampling logs from each monitoring event are included as **Attachment 3**.

### RESIDUAL PERSULFATE MEASUREMENTS/ASCORBIC ACID PRESERVATION

As described in the Injection Event #1/Post-Injection Monitoring Report (OBG, November 2014), EPA requested that alternative groundwater sample preservation techniques be incorporated into the post-injection groundwater sampling, citing an EPA Groundwater Issue paper titled "Ground Water Sample Preservation at In-Situ Chemical Oxidation Sites – Recommended Guidelines". The paper indicated the potential for VOC concentrations in groundwater samples collected following the application of ISCO reagents to be biased low, due to the presence of residual oxidant(s) in the samples. To address this potential, the paper recommended the use of field measurements to evaluate the presence/concentrations of residual oxidant(s) in groundwater prior to the collection of groundwater samples for laboratory analysis, and the use of ascorbic acid preservation (in addition to standard hydrochloric acid [HCI] preservation) for the collection of groundwater samples where the presence of residual oxidant(s) is indicated by the field measurements.

Based on EPA's request, as part of the 2<sup>nd</sup> through 4<sup>th</sup> post-Injection Event #1 (2014) monitoring events, five of the ISCO treatment area wells (exhibiting the highest groundwater VOC concentrations based on prior monitoring results) were field-tested for the presence of residual persulfate via peristaltic pump and colorimetric testing kits, consistent with the persulfate field measurement approach used during the injection work. Based on the field testing findings indicating low levels of residual persulfate, groundwater VOC samples were collected during the 3<sup>rd</sup> and 4<sup>th</sup> post-Injection Event #1 monitoring events at the wells using standard preservation (i.e., HCl), with duplicate samples collected using the alternative sample preservation procedure (i.e., ascorbic acid with HCl) for comparison. As presented in the Injection Event #1/Post-Injection Monitoring Report (OBG, November 2014), the groundwater VOC results using the ascorbic acid/HCl preservation method were similar to those obtained using the standard (HCl) preservation method (VOC results obtained using ascorbic acid/HCl preservation were marginally lower than those using standard preservation methods).

Based on EPA/NJDEP comments regarding the Injection Event #1/Post-Injection Monitoring Report (OBG, November 2014), duplicate groundwater samples using ascorbic acid/HCl preservation were also collected at ISCO-MW-2, ISCO-MW-3, ISCO-MW-5, and ISCO-MW-9 during the first post-Injection Event #2 groundwater monitoring event (6 weeks following injections), when residual oxidant concentrations in groundwater may be higher and therefore more pronounced differences in groundwater VOC analysis results may be expected using the two preservation methods. The four wells were field-tested for the presence of residual persulfate using colorimetric testing kits. Approximate persulfate field testing values for the four wells were as follows:

- ISCO-MW-2: 1,000 mg/L
- ISCO-MW-3: 70 mg/L
- ISCO-MW-5: 0-0.7 mg/L
- ISCO-MW-9: 200 mg/L

Based on the above findings, groundwater VOC samples were collected during the 1<sup>st</sup> post-Injection Event #2 monitoring event at the four wells using standard preservation (i.e., HCl), with duplicate samples collected using



the alternative sample preservation procedure (i.e., ascorbic acid with HCl) for comparison. Groundwater samples were collected/preserved in accordance with the RDR/RAWP and the updated SOP016 – Low Stress (Low Flow) Groundwater Purging and Sampling (as submitted to EPA on August 4, 2014) incorporating the use of the ascorbic acid preservation technique. **Table 1** presents the comparative groundwater results for the four wells using the two preservation methods (i.e., HCL preservative and ascorbic acid with HCL preservatives). VOC sampling results for the four wells using both standard (HCl) and ascorbic acid/HCl preservation methods yielded similar results as shown in **Attachment 4**, similar to the findings from the prior comparative groundwater sampling during the post-Injection Event #1 monitoring events.

### **GROUNDWATER SAMPLING RESULTS**

As described above, 10 wells were sampled during the first three post-Injection Event #2 sampling events and 16 wells were sampled during the 4<sup>th</sup> post-Injection Event #2 sampling event. Post-injection groundwater performance monitoring results are presented in **Table 2**. A summary of the 2014 baseline (January/February 2014) groundwater sampling results, 2015 baseline (March 2015) groundwater sampling results, and the four post-Injection Event #2 sampling events results is shown on **Figure 4**, along with updated estimated trichloroethene (TCE) and 1,2-dichloroethane (1,2-DCA) iso-concentration contours based on the latest groundwater results from the November 2015 monitoring event. Data validation results are included as **Attachment 8**, indicating that the groundwater data meet required usability criteria in accordance with the approved Uniform Federal Policy Quality Assurance Project Plan (UFP-QAPP).

A summary of groundwater results for each treatment area well from the post-Injection Event #2 performance groundwater monitoring events are described below and trend graphs are included as **Attachment 5**. The review targets the two VOCs most commonly detected above the New Jersey Ground Water Quality Standards (NJGWQS) at the Site (1,2-DCA and TCE) and looks at the total concentration trends for these two compounds in wells with remaining exceedances of one or both of these compounds:

### Treatment Area 1 (above the silty clay unit)

Several of the wells representing a majority of the Treatment Area 1 foot print continue to exhibit relatively low total VOC concentrations:

- » ISCO-MW-7: The total concentration of 1,2-DCA and TCE was 2 ug/L for Jan. 2014 baseline (prior to ISCO injections); 3.6 ug/L for March 2015 baseline (following Injection Event #1), and; 5.6 ug/L for the final sampling event following Injection Event #2 (November 2015).
- » IW1-BT-2: 1.6 ug/L for Jan. 2014 baseline; 2 ug/L for March 2015 baseline; and 10.4 ug/L final sampling event following injection Event #2 (November 2015). Based on prior monitoring results for IW1-BT-2, the 10.4 ug/L result for the November 2015 monitoring event is thought to be a transient effect from the nearby injection work, and is expected to decline over time (a similar concentration trend was noted following Injection Event #1).
- » ISCO-MW-8: 43.8 ug/L for Jan. 2014 baseline; 6 ug/L for March 2015 baseline; 5.7 ug/L final sampling event following Injection Event #2 (November 2015). This represents an approximate 87% reduction in 1,2-DCA and TCE concentrations from baseline conditions, achieved through the first injection event in February/March 2014 and sustained through November 2015.
- » ISCO-MW-9: 44 ug/L for Jan. 2014 baseline; 12.5 ug/L for March 2015 baseline; 12.6 ug/L For final sampling event following Injection Event #2 (November 2015) This represents an approximate 70% reduction in 1,2-DCA and TCE concentrations from baseline conditions, achieved through the first injection event in February/March 2014 and sustained through November 2015.



- ISCO-MW-2: 1,271.8 ug/L 1,2-DCA and TCE for Jan. 2014 baseline; 842.9 ug/L for March 2015 baseline; 259 ug/L on November 2015. This represents an approximate 80% reduction in 1,2-DCA and TCE concentrations from baseline conditions, achieved through the two injection events. There was a strong initial decrease in concentrations following each injection event, followed by a nominal increase in concentrations. For example, following Injection Event #2, ISCO-MW-2 demonstrated an initial 89% decrease in 1,2-DCA and TCE concentrations (from 842.9 ug/L for March 2015 baseline down to 94.7 ug/L). The concentration then fluctuated between approximately 220 ug/L and 315 ug/L.
- ISCO-MW-3: 54.9 ug/L TCE for Jan. 2014 baseline; 77.1 ug/L for March 2015 baseline; 80.1 ug/L for November 2015. Similar to ISCO-MW-2, there was a decrease in TCE concentrations following the injection work, with a subsequent return to baseline conditions. Cis-1,2-dichloroethene (cis-1,2-DCE) was also detected in the later monitoring events at concentrations just above its respective NJGWQS (70 ug/L).

### Treatment Area 2 (below the silty clay unit)

- Total TCE and 1,2-DCA concentrations in the portions of the treatment area where no further injection work was completed as part of Injection Event #2 (e.g., vicinity of PZ-1S, ISCO-MW-1, and ISCO-MW-6) have remained low (in the range of 2-6 ug/L). The total TCE and 1,2-DCA concentrations for these wells are summarized as follows:
  - » ISCO-MW-1: 44.5 ug/L for Jan. 2014 baseline (prior to ISCO injections); 3.6 ug/L for March 2015 baseline (following Injection Event #1); 3.6 ug/L for the final sampling event in November 2015. This represents an approximate 92% reduction in TCE and 1,2-DCA concentrations achieved through the first injection event in February/March 2014 and sustained through November 2015.
  - » PZ-1S: 2 ug/L for Jan. 2014 baseline; 4.4 ug/L for March 2015 baseline; 3.9 ug/L for the November 2015 event.
  - » ISCO-MW-6: 2 ug/L for Jan. 2014 baseline; 1.8 ug/L for March 2015 baseline; 1.9 ug/L for the November 2015 event.
- A second round of injections was completed in the vicinity of ISCO-MW-5 as described above. ISCO-MW-5 groundwater monitoring results indicated an initial decrease in 1,2-DCA and TCE concentrations (from 198.3 ug/L in the March 2015 baseline, down to 128.6 ug/L in the 1st post- Injection Event #2 groundwater monitoring event in July 2015), followed by a return to approximate pre-injection concentrations (219.6 ug/L) during the final post-injection groundwater monitoring event in November 2015.

### General Observations

- Increased acetone concentrations appear in a number of wells, although not at concentrations that would be of concern relative to its groundwater quality standard (i.e., 6,000 ug/L). The minor acetone concentrations detected are a typical by-product of the ISCO process and are also expected to decrease over time. In addition, acetone was not detected in downgradient wells, which supports that the temporary acetone increases appear to be localized to the treatment areas.
- While there were initial increases in dissolved chromium concentrations, the trend is downward/neutral (e.g., IW1-BT-2 and ISCO-MW-3). Low-level chromium detections have been identified sporadically in the downgradient wells (e.g., approximately 40 ug/L in well MW-10S). However these detections appear to be relatively close to the treatment area and not likely to migrate any significant distance downgradient. Based on post-Injection Event #1 groundwater monitoring results and Post-Injection Event #2 groundwater monitoring results to date, chromium concentrations are expected to continue to decrease over time.



■ Wells located downgradient from the injection areas show no significant migration/mobilization of groundwater constituents from the ISCO treatment areas throughout the ISCO RA program. ISCO-MW-4 and MW-14S have exhibited no 1,2-DCA or TCE concentrations above GWQS. The November 2015 results for MW-10S exhibited small increase in 1,2-DCA concentrations (from 1.2 ug/L to 14 ug/L) most likely due to transient effects from upgradient injection work proximal to ISCO-MW-5.

The above observations support that there have been no significant downgradient groundwater transport/impacts associated with the ISCO RA program.

As part of each groundwater monitoring event, water level measurements were collected from each monitoring well. The data collected were used to generate groundwater contour maps for the shallow and perched aquifers. Groundwater elevations are summarized on **Table 3** and groundwater elevation contour maps are included as **Attachment 6**. Groundwater flow direction in the perched aquifer is to the southeast. Groundwater flow direction in the shallow aquifer was consistently to the southwest throughout the post-injection monitoring period. This groundwater flow direction is consistent with previous findings.

### RECOMMENDATIONS FOR THE REMEDIAL PROGRAM

### **COMPLIANCE WITH OU3 REMEDIAL ACTION OBJECTIVES**

Remedial Action Objectives (RAOs) were set forth in the OU3 Record of Decision (ROD) (EPA 2012) to address VOC-impacted groundwater at the Site. The following presents a discussion of historic remedial activities, the ISCO program results and overall groundwater quality pursuant to the respective RAOs.

### Remediate groundwater to the extent practicable...

Prior to the OU3 ISCO RA, and as documented in the OU2 Remedial Action Report (*de maximis, inc.*, 2013), numerous soil/source area removal activities were previously completed across the Site, to address impacted soils, drum fragments, and other potential source areas which may have posed ongoing impacts to groundwater. These potential source area removals commenced in the 1970s and culminated with the completion of the OU2 remedial program in 2012. As documented in the OU3 Remedial Investigation Report (Arcadis, 2011), concentrations of site-related constituents in groundwater (e.g., TCE, 1,2-DCA) have declined over the years in conjunction with the various source removals, and this finding is supported by the more recent groundwater monitoring conducted during the ISCO remedial action. As shown on Figure 4 and described above, groundwater sampling results for downgradient wells from the ISCO treatment areas (MW-10S, MW-14S, and ISCO-MW-4) have exhibited VOC concentrations near or below GWQS throughout the injections, and this is consistent with the groundwater results for other wells located outside the treatment areas along the downgradient property boundary. The goal of the ISCO remedial action was to address residual concentrations of remaining groundwater constituents within the designated treatment areas to the extent practicable, and the key findings are summarized as follows:

### Treatment Area 1

Two full ISCO injection events have been successfully completed within Treatment Area 1, as documented in this report and in the Injection Event #1/Post-Injection Monitoring Report (OBG, November 2014). Findings from the groundwater monitoring for the Treatment Area 1 wells (ISCO-MW-2, ISCO-MW-3, ISCO-MW-7, ISCO-MW-8, IW1-BT-2, and ISCO-MW-9) are summarized as follows:

A majority of the Treatment Area 1 footprint (represented by monitoring results for ISCO-MW-7, ISCO-MW-8, ISCO-MW-9, and IW1-BT-2) exhibits relatively low 1,2-DCA and TCE concentrations above the NJGWQS (in



the range of 1-10 ug/L), representing up to an order of magnitude reduction in the degree/extent of groundwater VOC impacts in this treatment area.

- For ISCO-MW-2, ISCO-MW-8 and ISCO-MW-9, significant 1,2-DCA/TCE reductions (in the range of 70%-87% from baseline/pre-injection conditions) were achieved through the ISCO injection events. For ISCO-MW-8 and ISCO-MW-9, reductions achieved through Injection Event #1 in February/March 2014 have been sustained based on post-injection groundwater monitoring results through November 2015. However, groundwater monitoring results also indicate that additional reductions for these two wells were not achieved through ISCO Injection Event #2 in June 2015.
- For ISCO-MW-7 and IW1-BT-2, the 1,2-DCA/TCE concentrations were initially low (i.e., below 10 ug/L) prior to the ISCO program, and have remained in the same range over the course of the two injection events.
- For ISCO-MW-3, groundwater monitoring results for Injection Event #2 indicate an initial reduction in TCE concentrations, followed by a return to approximate pre-injection conditions (a similar trend was noted for the groundwater monitoring results following Injection Event #1).

### Treatment Area 2

Two ISCO injection events have been successfully completed within Treatment Area 2, as documented in this report and in the Injection Event #1/Post-Injection Monitoring Report (OBG, November 2014). Findings from the groundwater monitoring for the Treatment Area 2 wells (PZ-1S, ISCO-MW-1, ISCO-MW-5, and ISCO-MW-6) are summarized as follows:

- Several wells representing a majority of the Treatment Area 2 footprint (ISCO-MW-1, PZ-1S, and ISCO-MW-6) exhibit relatively low total COC concentrations above the NJGWQS (in the range of 1-10 ug/L), representing up to an order of magnitude reduction in the degree/extent of groundwater VOC impacts in this treatment area.
- For ISCO-MW-1, significant 1,2-DCA/TCE reductions (approximately 92% from baseline/pre-injection conditions) were achieved through ISCO Injection Event #1 in February/March 2014, and with USEPA approval, no further injections were completed in the vicinity of this well for Injection Event #2. Concentrations of 1,2-DCA/TCE in this well have remained low based on the November 2015 groundwater monitoring results.
- For ISCO-MW-6 and PZ-1S, the COC concentrations were initially low (i.e., below 10 ug/L) prior to the injection work, with no significant changes in 1,2-DCA/TCE concentrations exhibited following ISCO Injection Event #1 in February/March 2014, and with USEPA approval, no further injections were completed in the vicinity of these wells for Injection Event #2. Concentrations in these wells have remained low based on the November 2015 groundwater results.
- For ISCO-MW-5 (the well with the highest overall 1,2-DCA/TCE concentrations in Treatment Area 2), monitoring results following Injection Event #1 in 2014 indicated a reduction in 1,2-DCA/TCE concentrations. However, groundwater monitoring results in early 2015 prior to Injection Event #2 indicated an increase in 1,2-DCA/TCE concentrations. Thereafter, groundwater monitoring results for Injection Event #2 indicated an initial reduction in concentrations, followed by a return to approximate pre-injection conditions.

As detailed above, the ISCO post-injection monitoring results indicate that either significant reductions have been achieved through the ISCO injection events, that previously low concentrations have been sustained (i.e., concentrations were initially low with no significant changes noted in response to the ISCO injections), or, in the case of a few wells, 1,2-DCA/TCE concentrations have returned to their approximate pre-injection levels. In cases where VOC reductions were achieved and have been maintained, there were no appreciable additional



reductions achieved during the ISCO Event #2. Combined, these findings suggest that additional ISCO injections would not result in significant improvements in groundwater quality within the treatment areas. The approved RDR/RAWP for the OU3 ISCO remedial action defines the 'practical limits of the technology' as "the point in the program at which the application of additional ISCO treatment/expenditure of costs would yield only incremental/marginal improvements in groundwater quality and would not facilitate further achievement of the remedial action objectives." Based on the ISCO work and associated groundwater monitoring results completed to-date as summarized above, the practical limits of the ISCO technology have been achieved in Treatment Areas 1 and 2.

### ...and minimize the potential for further migration of contaminants in groundwater

Monitoring wells immediately downgradient of the two treatment areas (MW-10S, MW-14S, and ISCO-MW-4) continue to show no significant migration/mobilization of groundwater constituents from the injection areas, as described above. In addition, VOC concentrations in downgradient monitoring wells located on the CPS/Madison Industries (CPS/Madison) property (MW-23S, MW-23I, MW-23D, WCC-1M, WCC-1S, and WCC-3M) have exhibited little to no changes throughout the ISCO implementation or in response to other historic groundwater activities including both operation and shut down of the interim groundwater extraction/treatment system (refer to the trend graphs in Attachment 7). As shown on the trend graphs, 1,2-DCA and TCE concentrations in MW-23I, MW-23D, WCC-1S, and WCC-3M, have remained consistently low and concentrations in MW-23S and WCC-1S have fluctuated over time with no apparent correlation to historical groundwater activities. These results continue to support the conclusion that Site groundwater is not affecting downgradient offsite groundwater quality.

### **RECOMMENDATIONS**

Based on the ISCO remedial action work and associated groundwater monitoring results for OU3 as described above, no additional ISCO injections in Treatment Areas 1 and 2 are recommended. Further, it is concluded that additional active groundwater remediation measures will not provide any added Site benefit in regard to achieving the RAOs. Therefore, in accordance with the Statement of Work in the Remedial Action Consent Decree for OU3 (February 2013), we believe that the OU3 construction has been successfully completed. Groundwater will continue to be monitored for a period of several years as a part of post-remediation groundwater monitoring in accordance with the OU3 ROD (EPA 2012). The 2016 annual groundwater monitoring event is proposed to be completed in March-April 2016 (consistent with the scope of work for the 2014 and 2015 annual events), to serve as the start of post-remediation groundwater monitoring. A Classification Exception Area (CEA) has already been established for the Site to document the area of the plume that exceeds NJGWQS. The CEA (together with other institutional controls as required) will remain in place until remediation goals are met. The maintenance of the Site CEA will limit potential future exposure to impacted groundwater until the NJGWQS have been achieved. The extent of the CEA will also be reviewed and updated as required in conjunction with the post-remediation groundwater monitoring.

Pending EPA/NJDEP review of/concurrence with the findings and conclusions presented herein, a Draft Interim Remedial Action Report will be prepared to document the overall work completed for the OU3 remedial action, including details of the post-remediation groundwater monitoring program.



Should you have any questions regarding this submission or require additional information, please do not hesitate to contact me at (732) 638-2930.

Very truly yours, O'BRIEN & GERE ENGINEERS, INC.

**Gary Angyal, PE** Vice President

cc: EPLC Site Group

Mr. Chris Young, *de maximis, inc.* Mr. Matt Grubb, *de maximis, inc.* 

Mr. Jeffrey Levesque, O'Brien & Gere Engineers, Inc. Ms. Jessica Lehigh, O'Brien & Gere Engineers, Inc.

#### **ATTACHMENTS:**

Table 1 – Ascorbic Acid Preservation Comparison Table

Table 2 – Post-Injection Event #2 Groundwater Sampling Results

Table 3 - Groundwater Elevations

Figure 1 – Site Location Map

Figure 2 – Site Plan

Figure 3 – ISCO Injection Layout & Monitoring Plan

Figure 4 - Injection Event #2 Groundwater Sampling Results

Attachment 1 - Treatment Area 1 Injection Summary & Process Monitoring Results

Attachment 2 - Treatment Area 2 Injection Summary & Process Monitoring Results

Attachment 3 - Groundwater Low-Flow Sampling Logs

Attachment 4 - Ascorbic Acid Preservation Comparison Graphs

Attachment 5 - Groundwater Results Trend Graphs

Attachment 6 – Groundwater Elevation Contour Maps

Attachment 7 – CPS/Madison Property Wells Groundwater Results Trend Graphs

Attachment 8 – Data Validation Report





| Sample ID                                            |                                       | ISC                     | O-1      | vIW-2                 |          | ISC                     | O-1      | /IW-3                                            |    | ISO                    | ا <b>-</b> 01 | MW-5                   |          | ISC                    | :O-MW-9                |
|------------------------------------------------------|---------------------------------------|-------------------------|----------|-----------------------|----------|-------------------------|----------|--------------------------------------------------|----|------------------------|---------------|------------------------|----------|------------------------|------------------------|
| Sample ID                                            | NJ CLASS IIA                          |                         |          |                       |          |                         |          |                                                  | 7  |                        |               |                        |          |                        |                        |
| Residual Persulfate Concentration:                   | GROUNDWATER QUALITY                   |                         | UU       | mg/L                  |          |                         | U M      | ıg/L                                             |    |                        | .0.7          | mg/L                   |          |                        | 00 mg/L                |
| Preservative                                         | CRITERIA (7/22/2010)                  | HCL                     |          | AA+HCL                |          | HCL                     |          | AA+HCL                                           | _  | HCL                    |               | AA+HCL                 |          | HCL                    | AA+HCL                 |
| Sample Date<br>Unit                                  | ug/L                                  | 7/22/2015<br>ug/L       | -        | 7/23/201!<br>ug/L     | •        | 7/23/2015<br>ug/L       | -        | 7/23/2015<br>ug/L                                | -  | 7/22/2015<br>ug/L      | _             | 7/23/2015<br>ug/L      | Ĭ        | 7/22/2015<br>ug/L      | 7/23/2015<br>ug/L      |
| Volatile Organic Compounds (VOCs)                    |                                       | ug/L                    |          | ug/L                  |          | ug/L                    |          | ug/L                                             |    | ug/L                   |               | ug/L                   |          | ug/L                   | ug/L                   |
| Acetone                                              | 6000                                  | 124                     | ĺ        | 146                   | ĺ        | 38.8                    | ĺ        | 47.8                                             | ī  | 7.4                    | J             | 11.6                   |          | ND (3.3)               | 7 J                    |
| Benzene                                              | 1                                     | 0.42                    | J        | 1.4                   | J        | ND (0.24)               |          | ND (0.47)                                        |    | 0.64                   |               | 0.57                   |          | ND (0.24)              | ND (0.24)              |
| Bromochloromethane                                   | -                                     | ND (0.37)               |          | ND (1.9)              |          | ND (0.37)               |          | ND (0.74)                                        |    | ND (0.37)              |               | ND (0.37)              |          | ND (0.37)              | ND (0.37)              |
| Bromodichloromethane                                 | 1                                     | ND (0.23)<br>ND (0.23)  | -        | ND (1.1)<br>ND (1.2)  | -        | ND (0.23)               | -        | ND (0.45)<br>ND (0.47)                           | 4  | ND (0.23)              |               | ND (0.23)              |          | ND (0.23)<br>ND (0.23) | ND (0.23)              |
| Bromoform<br>Bromomethane                            | 4<br>10                               | ND (0.23)<br>ND (0.42)  | -        | ND (1.2)<br>ND (2.1)  | -        | ND (0.23)<br>ND (0.42)  | -        | ND (0.47)<br>ND (0.85)                           | +  | ND (0.23)<br>6.2       |               | ND (0.23)<br>6.2       |          | ND (0.23)<br>ND (0.42) | ND (0.23)<br>ND (0.42) |
| 2-Butanone (MEK)                                     | 300                                   | 8.9                     | J        |                       |          | ND (5.6)                | -        | ND (11)                                          | +  | ND (5.6)               |               | ND (5.6)               |          | ND (5.6)               | ND (5.6)               |
| Carbon disulfide                                     | 700                                   | 4.1                     | Ė        | ND (1.3)              |          | 0.68                    | J        | ND (0.51)                                        | 7  | ND (0.25)              |               | ND (0.25)              |          | ND (0.25)              | ND (0.25)              |
| Carbon tetrachloride                                 | 1                                     | ND (0.22)               |          | ND (1.1)              |          | ND (0.22)               |          | ND (0.44)                                        |    | ND (0.22)              |               | ND (0.22)              |          | ND (0.22)              | ND (0.22)              |
| Chlorobenzene                                        | 50                                    | ND (0.19)               |          | ND (0.93)             |          | ND (0.19)               |          | ND (0.37)                                        |    | ND (0.19)              |               | ND (0.19)              |          | ND (0.19)              | ND (0.19)              |
| Chloroethane                                         | =                                     | ND (0.34)               |          | ND (1.7)              |          | ND (0.34)               |          | ND (0.68)                                        |    | ND (0.34)              |               | ND (0.34)              |          | ND (0.34)              | ND (0.34)              |
| Chloroform                                           | 70                                    | 1.1                     | -        | ND (0.94)             | _        | ND (0.19)               | -        | ND (0.37)                                        | _  | ND (0.19)              |               | ND (0.19)              |          | ND (0.19)              | ND (0.19)              |
| Chloromethane<br>Cyclohexane                         | -                                     | ND (0.41)<br>ND (0.28)  | -        | ND (2.0)<br>ND (1.4)  | <u> </u> | ND (0.41)<br>ND (0.28)  | -        | ND (0.81)<br>ND (0.56)                           |    | 6.1<br>0.39            | J             | 5.5<br>0.33            | J        | ND (0.41)<br>ND (0.28) | ND (0.41)<br>ND (0.28) |
| 1,2-Dibromo-3-chloropropane                          | 0.02                                  | ND (0.28)               | t        | ND (5.0)              | H        | ND (0.20)               | t        | ND (0.30)                                        | -  | ND (0.99)              | Ť             | ND (0.99)              | H        | ND (0.20)              | ND (0.99)              |
| Dibromochloromethane                                 | 1                                     | ND (0.15)               | T        | ND (0.77)             | T        | ND (0.15)               | T        | ND (0.31)                                        | 1  | ND (0.15)              | П             | ND (0.15)              | П        | ND (0.15)              | ND (0.15)              |
| 1,2-Dibromoethane                                    | 0.03                                  | ND (0.23)               |          | ND (1.2)              |          | ND (0.23)               |          | ND (0.46)                                        |    | ND (0.23)              |               | ND (0.23)              |          | ND (0.23)              | ND (0.23)              |
| 1,2-Dichlorobenzene                                  | 600                                   | 0.37                    | J        | (0.00)                |          | ND (0.19)               |          | ND (0.37)                                        |    | ND (0.19)              |               | ND (0.19)              |          | ND (0.19)              | ND (0.19)              |
| 1,3-Dichlorobenzene                                  | 600                                   | ND (0.23)               | 1        | ND (1.1)              | $\vdash$ | ND (0.23)               | 1        | ND (0.45)                                        | 4  | ND (0.23)              | Щ             | ND (0.23)              | Н        | ND (0.23)              | ND (0.23)              |
| 1,4-Dichlorobenzene Dichlorodifluoromethane          | 75<br>1000                            | ND (0.27)<br>ND (0.90)  | Ͱ        | ND (1.4)<br>ND (4.5)  | Ͱ        | ND (0.27)<br>ND (0.90)  | Ͱ        | ND (0.55)<br>ND (1.8)                            | 4  | ND (0.27)<br>ND (0.90) | H             | ND (0.27)<br>ND (0.90) | Н        | ND (0.27)<br>ND (0.90) | ND (0.27)<br>ND (0.90) |
| 1,1-Dichloroethane                                   | 50                                    | ND (0.90)<br>ND (0.17)  | $\vdash$ | ND (4.5)<br>ND (0.86) | $\vdash$ | ND (0.90)<br>ND (0.17)  | $\vdash$ | ND (1.8)<br>ND (0.34)                            | +  | 0.69                   | J             | 0.68                   | J        | ND (0.90)<br>ND (0.17) | ND (0.90)<br>ND (0.17) |
| 1,2-Dichloroethane                                   | 2                                     | 84.9                    | <u> </u> | 127                   |          | ND (0.18)               | <u> </u> | ND (0.36)                                        | =  | 106                    | Ť             | 109                    | Ť        | ND (0.18)              | ND (0.18)              |
| 1,1-Dichloroethene                                   | 1                                     | ND (0.51)               |          | ND (2.6)              |          | ND (0.51)               |          | ND (1.0)                                         |    | ND (0.51)              |               | ND (0.51)              |          | ND (0.51)              | ND (0.51)              |
| cis-1,2-Dichloroethene                               | 70                                    | 0.64                    | J        | \ /                   |          | 37.6                    |          | 38.8                                             |    | 3.3                    |               | 3.2                    |          | 0.51                   | J 0.3 J                |
| trans-1,2-Dichloroethene                             | 100                                   | ND (0.65)               |          | ND (3.2)              |          | ND (0.65)               |          | ND (1.3)                                         |    | ND (0.65)              |               | ND (0.65)              |          | ND (0.65)              | ND (0.65)              |
| 1,2-Dichloropropane                                  | 1                                     | ND (0.39)<br>ND (0.21)  | -        | ND (2.0)              | _        | ND (0.39)<br>ND (0.21)  | -        | ND (0.79)                                        | _  | ND (0.39)              |               | ND (0.39)<br>ND (0.21) |          | ND (0.39)              | ND (0.39)              |
| cis-1,3-Dichloropropene<br>trans-1,3-Dichloropropene | -                                     | ND (0.21)<br>ND (0.19)  | -        | ND (1.0)<br>ND (0.93) | -        | ND (0.21)<br>ND (0.19)  | -        | ND (0.41)<br>ND (0.37)                           | +  | ND (0.21)<br>ND (0.19) |               | ND (0.21)<br>ND (0.19) |          | ND (0.21)<br>ND (0.19) | ND (0.21)<br>ND (0.19) |
| 1,4-Dioxane                                          | -                                     | ND (41)                 | -        | ND (200)              |          | ND (41)                 | -        | ND (81)                                          | +  | ND (0.19)              |               | ND (41)                |          | ND (41)                | ND (41)                |
| Ethylbenzene                                         | 700                                   | ND (0.27)               | T        | ND (1.3)              |          | ND (0.27)               | T        | ND (0.54)                                        | 7  | ND (0.27)              |               | ND (0.27)              |          | ND (0.27)              | ND (0.27)              |
| Freon 113                                            | -                                     | ND (0.52)               |          | ND (2.6)              |          | ND (0.52)               |          | ND (1.0)                                         |    | ND (0.52)              |               | ND (0.52)              |          | ND (0.52)              | ND (0.52)              |
| 2-Hexanone                                           | -                                     | ND (1.7)                |          | ND (8.7)              |          | ND (1.7)                |          | ND (3.5)                                         |    | ND (1.7)               |               | ND (1.7)               |          | ND (1.7)               | ND (1.7)               |
| Isopropylbenzene                                     | 700                                   | ND (0.23)               |          | ND (1.2)              | <u> </u> | ND (0.23)               |          | ND (0.47)                                        |    | 0.65                   | J             | 0.58                   | J        | ND (0.23)              | ND (0.23)              |
| Methyl Acetate  Methylcyclohexane                    | 7000                                  | ND (1.9)<br>ND (0.22)   | -        | ND (9.4)<br>ND (1.1)  | _        | ND (1.9)<br>ND (0.22)   | -        | ND (3.8)<br>ND (0.44)                            | _  | ND (1.9)<br>ND (0.22)  |               | ND (1.9)<br>ND (0.22)  |          | ND (1.9)<br>ND (0.22)  | ND (1.9)<br>ND (0.22)  |
| Methyl Tert Butyl Ether                              | 70                                    | ND (0.24)               | -        | ND (1.2)              | 1        | ND (0.24)               | -        | ND (0.47)                                        |    | ND (0.24)              |               | ND (0.24)              |          | ND (0.24)              | ND (0.24)              |
| 4-Methyl-2-pentanone(MIBK)                           | ÷.                                    | ND (1.0)                |          | ND (5.1)              |          | ND (1.0)                |          | ND (2.0)                                         |    | ND (1.0)               |               | ND (1.0)               |          | ND (1.0)               | ND (1.0)               |
| Methylene chloride                                   | 3                                     | ND (0.73)               | _        | ND (3.6)<br>ND (1.4)  | _        | ND (0.73)               | _        | ND (1.5)<br>ND (0.54)                            | 4  | ND (0.73)<br>ND (0.27) |               | ND (0.73)              |          | ND (0.73)<br>ND (0.27) | ND (0.73)<br>ND (0.27) |
| Styrene<br>1,1,2,2-Tetrachloroethane                 | 100                                   | ND (0.27)<br>ND (0.21)  | -        | ND (1.4)<br>ND (1.0)  | _        | ND (0.27)<br>ND (0.21)  | -        | ND (0.54)<br>ND (0.41)                           | 4  | ND (0.21)              |               | ND (0.27)<br>ND (0.21) |          | ND (0.27)<br>ND (0.21) | ND (0.27)<br>ND (0.21) |
| Tetrachloroethene                                    | 1                                     | 3.7                     | T        | ND (2.0)              |          | 1.8                     | T        | 1.3                                              | J  | ND (0.40)              |               | ND (0.40)              |          | 1.3                    | 1.1                    |
| Toluene                                              | 600                                   | 0.37                    | J        | , ,                   |          | ND (0.16)               |          | ND (0.32)                                        |    | ND (0.16)              |               | ND (0.16)              |          | ND (0.16)              | 0.2 J                  |
| 1,2,3-Trichlorobenzene<br>1,2,4-Trichlorobenzene     | 9                                     | 0.26<br>0.92            | J        |                       | _        | ND (0.23)<br>ND (0.21)  | -        | ND (0.45)<br>ND (0.42)                           | _  | ND (0.23)<br>ND (0.21) |               | ND (0.23)<br>ND (0.21) |          | ND (0.23)<br>ND (0.21) | ND (0.23)<br>ND (0.21) |
| 1,1,1-Trichloroethane                                | 30                                    | ND (0.25)               | ۲        | ND (1.0)              | $\vdash$ | ND (0.21)<br>ND (0.25)  | H        | ND (0.42)<br>ND (0.50)                           | 1  | 0.49                   | J             | 0.54                   | J        | ND (0.21)<br>ND (0.25) | ND (0.21)              |
| 1,1,2-Trichloroethane                                | 3                                     | ND (0.21)               |          | ND (1.1)              |          | ND (0.21)               |          | ND (0.43)                                        |    | ND (0.21)              |               | ND (0.21)              |          | ND (0.21)              | ND (0.21)              |
| Trichloroethene                                      | 1                                     | 9.9<br>ND (0.43)        | L        | 2.7<br>ND (2.1)       | J        | 36.4<br>ND (0.43)       | L        | 33.3<br>ND (0.96)                                | 4  | 22.6<br>ND (0.43)      | Ц             | 20.5<br>ND (0.43)      | Ц        | 13.3<br>ND (0.43)      | 10.4<br>ND (0.43)      |
| Trichlorofluoromethane Vinyl chloride                | 2000                                  | ND (0.43)<br>0.9        | J        | ND (2.1)<br>ND (0.74) | ╁        | ND (0.43)<br>ND (0.15)  | ╁        | ND (0.86)<br>ND (0.29)                           | -  | ND (0.43)<br>ND (0.15) | H             | ND (0.43)<br>ND (0.15) | Н        | ND (0.43)<br>ND (0.15) | ND (0.43)<br>ND (0.15) |
| m,p-Xylene                                           | -                                     | 0.78                    | J        | ND (1.9)              | T        | ND (0.38)               | t        | ND (0.75)                                        | _1 | ND (0.38)              | Ħ             | ND (0.38)              | Ħ        | ND (0.38)              | ND (0.38)              |
| o-Xylene                                             | -                                     | 0.35                    | J        |                       |          | ND (0.17)               |          | ND (0.33)                                        |    | ND (0.17)              |               | 0.21                   | J        | ND (0.17)              | ND (0.17)              |
| Xylene (total)<br>Total VOCs                         | 1000                                  | 1.1<br>241.58           | ╀        | ND (0.83)<br>277.1    | Ͱ        | ND (0.17)<br>115.28     | ╀        | ND (0.33)<br>121.2                               | 4  | ND (0.17)<br>154.46    | H             | 0.21<br>158.91         | J        | ND (0.17)<br>15.11     | ND (0.17)<br>19        |
| Total VOCs<br>Total VOCs above GWQS                  | -                                     | 98.5                    | t        | 131.1                 | $\vdash$ | 38.2                    | t        | 34.6                                             | -  | 128.6                  | H             | 129.5                  | H        | 14.6                   | 11.5                   |
|                                                      |                                       |                         |          |                       |          |                         |          |                                                  |    |                        |               |                        |          |                        | <u> </u>               |
| GC/MS Volatile TIC                                   |                                       |                         |          |                       |          |                         |          |                                                  |    | 24 =                   |               | 00.1                   |          |                        |                        |
| Total TIC, Volatile<br>Total Alkanes                 | -                                     | 0                       | ┢        | 0                     | ┢        | 0                       | ┢        | 0                                                | 4  | <b>21.7</b><br>0       | J             | <b>29.1</b>            | J        | 0                      | 0                      |
| . oca. / incirco                                     | · · · · · · · · · · · · · · · · · · · |                         | 1        |                       | 1        | -                       | 1        |                                                  | -  | ,                      | ш             |                        | Ч        | 5                      |                        |
| Metals Analysis                                      |                                       |                         |          |                       |          |                         |          |                                                  |    |                        |               |                        |          |                        |                        |
| Total Chromium                                       | 70                                    | 5,790                   |          | -                     |          | 3,750                   |          | -                                                |    | <10                    |               | -                      | П        | 10.7                   | -                      |
| Dissolved Chromium Dissolved Iron                    | 300                                   | 6,970<br>113            | ╀        | -                     | Ͱ        | <b>4,820</b><br>334     | ╀        | <del>                                     </del> | 4  | <10<br>3,930           | H             | -                      | Н        | <10<br><100            |                        |
| Total Sodium                                         | 50000                                 | 7,050,000               | H        | -                     | $\vdash$ | 4,210,000               | H        | -                                                | 1  | 42,100                 |               | -                      | H        | 80,200                 |                        |
|                                                      |                                       |                         | _        | •                     | _        | ,                       | _        |                                                  | J  |                        |               |                        |          |                        |                        |
| General Chemistry                                    |                                       |                         |          |                       |          |                         |          |                                                  |    |                        |               |                        |          |                        |                        |
| Solids, Total Dissolved<br>Sulfate                   | 500000<br>250000                      | 25,800,000<br>8,050,000 | 1        | -                     | H        | 15,900,000<br>3,990,000 | 1        | -                                                | 4  | 254,000<br>128,000     | H             | -                      | H        | 546,000<br>219,000     | -                      |
|                                                      | 255000                                | 0,000,000               | 1        | I.                    | 1        | 3,550,000               | 1        |                                                  |    | 120,000                | Ш             |                        | <u> </u> | 225,000                |                        |

| Sample I                                           | D.                   | 2RND1 FR               | 2RND1 FB       | 2RND1 FB               | 2RND1 FR                                         | TRIPRI ANK             | TRIPRIANK              | 2RND1 ISCO-MW-2        | 2RND1 ISCO-MW-2                                  | 2RND1 ISCO-MW-2 AS    | C 2RND1 ISCO-MW-3      | 2RND1 ISCO-MW- | 3 2RND1 ISCO-MW-3 AS   | SC 2RND1 ISCO-MW-4     | 2RND1 ISCO-MW- | 2RND1 ISCO-MW-         | 5 2RND1 ISCO-MW-5 | 2RND1 ISCO-MW-5 ASC    | 2RND1 DUP 0722         | 15 2RND1 DUP | 2RND1 ISCO-MW-7        |
|----------------------------------------------------|----------------------|------------------------|----------------|------------------------|--------------------------------------------------|------------------------|------------------------|------------------------|--------------------------------------------------|-----------------------|------------------------|----------------|------------------------|------------------------|----------------|------------------------|-------------------|------------------------|------------------------|--------------|------------------------|
| Sample Dat                                         | NJ CLASS IIA         | JB99691-12             | JB99691-12F    | JB99691-16             | JB99691-16F                                      | JB99691-11             | JB99691-15             | JB99691-9              | JB99691-9F                                       | JB99691-19            | JB99691-13             | JB99691-13F    | JB99691-20             | JB99691-4              | JB99691-4F     | JB99691-6              | JB99691-6F        | JB99691-18             | JB99691-7              | JB99691-7F   | JB99691-8              |
| Sample Typ                                         | GROUNDWATER QUALITY  | 7/22/2015              | 7/22/2015      | 7/23/2015              | 7/23/2015                                        | 7/23/2015              | 7/23/2015              | 7/22/2015              | 7/22/2015                                        | 7/23/2015             | 7/23/2015              | 7/23/2015      | 7/23/2015              | 7/22/2015              | 7/22/2015      | 7/22/2015              | 7/22/2015         | 7/23/2015              | 7/22/2015              | 7/22/2015    | 7/22/2015              |
| Matri                                              | CRITERIA (7/22/2010) | WATER                  | WATER-FILTERED | D WATER                | WATER-FILTERED                                   | WATER                  | WATER                  | GW                     | GW-FILTERED                                      | GW                    | GW                     | GW-FILTERED    | GW                     | GW                     | GW-FILTERED    | GW                     | GW-FILTERED       | GW                     | GW                     | GW-FILTERED  | GW                     |
| Un                                                 | it ug/L              | ug/L                   | ug/L           | ug/L                   | ug/L                                             | ug/L                   | ug/L                   | ug/L                   | ug/L                                             | ug/L                  | ug/L                   | ug/L           | ug/L                   | ug/L                   | ug/L           | ug/L                   | ug/L              | ug/L                   | ug/L                   | ug/L         | ug/L                   |
| Volatile Organic Compounds (VOCs)                  |                      |                        |                |                        |                                                  |                        |                        |                        |                                                  |                       |                        |                |                        |                        |                |                        |                   |                        |                        |              |                        |
| Acetone                                            | 6000                 | ND (3.3)<br>ND (0.24)  | -              | ND (3.3)               | -                                                |                        | ND (3.3)               |                        | -                                                | 146<br>1.4            | 38.8                   | -              | 47.8<br>ND (0.47)      | ND (3.3)               | -              | 7.4<br>0.64            | J -               | 11.6<br>0.57           | 7.4<br>0.61            | J -          | 48.9                   |
| Benzene<br>Bromochloromethane                      | 1                    | ND (0.24)<br>ND (0.37) | -              | ND (0.24)<br>ND (0.37) | -                                                | ND (0.24)<br>ND (0.37) | ND (0.24)<br>ND (0.37) | 0.42 J<br>ND (0.37)    | -                                                | 1.4<br>ND (1.9)       | ND (0.24)<br>ND (0.37) | -              | ND (0.47)<br>ND (0.74) | ND (0.24)<br>ND (0.37) | -              | 0.64<br>ND (0.37)      | -                 | 0.57<br>ND (0.37)      | 0.61<br>ND (0.37)      | -            | ND (0.24)<br>ND (0.37) |
| Bromodichloromethane                               | 1                    | ND (0.23)              | -              | ND (0.23)              | <del>-</del> -                                   | ND (0.23)              | ND (0.23)              | ND (0.23)              | -                                                | ND (1.1)              | ND (0.23)              | -              | ND (0.45)              | ND (0.23)              | -              | ND (0.23)              | -                 | ND (0.23)              | ND (0.23)              | -            | ND (0.23)              |
| Bromoform                                          | 4                    | ND (0.23)              | -              | ND (0.23)              | -                                                | ND (0.23)              | ND (0.23)              | ND (0.23)              | -                                                | ND (1.2)              | ND (0.23)              | -              | ND (0.47)              | ND (0.23)              | -              | ND (0.23)              | -                 | ND (0.23)              | ND (0.23)              | -            | ND (0.23)              |
| Bromomethane                                       | 10                   | ND (0.42)              | -              | ND (0.42)              | -                                                | ND (0.42)              | ND (0.42)              | ND (0.42)              | -                                                | ND (2.1)              | ND (0.42)              | -              | ND (0.85)              | ND (0.42)              | -              | 6.2                    | -                 | 6.2                    | 5.4                    | -            | 5.7                    |
| 2-Butanone (MEK) Carbon disulfide                  | 300<br>700           | ND (5.6)<br>ND (0.25)  |                | ND (5.6)<br>ND (0.25)  | -                                                | ND (5.6)<br>ND (0.25)  | ND (5.6)<br>ND (0.25)  | 8.9 J<br>4.1           | -                                                | ND (28)<br>ND (1.3)   | ND (5.6)<br>0.68       | -              | ND (11)<br>ND (0.51)   | ND (5.6)<br>ND (0.25)  | -              | ND (5.6)<br>ND (0.25)  | -                 | ND (5.6)<br>ND (0.25)  | ND (5.6)<br>ND (0.25)  | -            | ND (5.6)<br>ND (0.25)  |
| Carbon tetrachloride                               | 1                    | ND (0.22)              |                | ND (0.22)              | -                                                |                        | ND (0.22)              |                        | -                                                | ND (1.1)              | ND (0.22)              | -              | ND (0.44)              | ND (0.22)              | -              | ND (0.22)              | -                 | ND (0.22)              | ND (0.22)              | -            | 0.81 J                 |
| Chlorobenzene                                      | 50                   | ND (0.19)              |                | ND (0.19)              | -                                                | 140 (0.13)             | ND (0.19)              |                        | -                                                | ND (0.93)             | ND (0.19)              | -              | ND (0.37)              | ND (0.19)              | -              | ND (0.19)              | -                 | ND (0.19)              | ND (0.19)              |              | ND (0.19)              |
| Chloroform                                         | 5<br>70              | ND (0.34)<br>ND (0.19) |                | ND (0.34)<br>ND (0.19) | -                                                | ND (0.34)              | ND (0.34)<br>ND (0.19) | ND (0.34)<br>1.1       | -                                                | ND (1.7)<br>ND (0.94) | ND (0.34)<br>ND (0.19) | -              | ND (0.68)<br>ND (0.37) | ND (0.34)<br>0.3 J     | -              | ND (0.34)<br>ND (0.19) | -                 | ND (0.34)<br>ND (0.19) | ND (0.34)<br>ND (0.19) |              | ND (0.34)<br>1.7       |
| Chloroform<br>Chloromethane                        | -                    | ND (0.19)              |                | ND (0.19)              | <del>-</del> -                                   | 140 (0.13)             | ND (0.19)              | ND (0.41)              | -                                                | ND (0.94)             | ND (0.19)              | -              | ND (0.81)              | ND (0.41)              | -              | 6.1                    | -                 | 5.5                    | 5.4                    |              | 3                      |
| Cyclohexane                                        | -                    | ND (0.28)              | -              | ND (0.28)              | -                                                | ND (0.28)              | ND (0.28)              | ND (0.28)              | <u> </u>                                         | ND (1.4)              | ND (0.28)              | -              | ND (0.56)              | ND (0.28)              | -              | 0.39                   | J -               | 0.33 J                 | 0.32                   |              | ND (0.28)              |
| 1,2-Dibromo-3-chloropropane                        | 0.02                 | ND (0.99)              | -              | ND (0.99)              | -                                                | 110 (0.55)             | ND (0.99)              | ND (0.99)              |                                                  | ND (5.0)              | ND (0.99)              |                | ND (2.0)               | ND (0.99)              |                | ND (0.99)              | -                 | ND (0.99)              | ND (0.99)              | -            | ND (0.99)              |
| Dibromochloromethane 1.2-Dibromoethane             | 0.03                 | ND (0.15)<br>ND (0.23) |                | ND (0.15)<br>ND (0.23) |                                                  | 110 (0.15)             | ND (0.15)<br>ND (0.23) | ND (0.15)<br>ND (0.23) | 1 -                                              | ND (0.77)<br>ND (1.2) | ND (0.15)<br>ND (0.23) | +              | ND (0.31)<br>ND (0.46) | ND (0.15)<br>ND (0.23) | -              | ND (0.15)<br>ND (0.23) | 1 -               | ND (0.15)<br>ND (0.23) | ND (0.15)<br>ND (0.23) | -            | ND (0.15)<br>ND (0.23) |
| 1,2-Distromoethane 1,2-Distromoethane              | 600                  | ND (0.23)<br>ND (0.19) |                | ND (0.23)<br>ND (0.19) | -                                                | 110 (0.23)             | ND (0.23)<br>ND (0.19) | 0.37 J                 | -                                                | ND (1.2)<br>ND (0.93) | ND (0.23)<br>ND (0.19) |                | ND (0.46)<br>ND (0.37) | ND (0.23)<br>ND (0.19) | - 1            | ND (0.23)<br>ND (0.19) | - 1               | ND (0.23)<br>ND (0.19) | ND (0.23)              | -            | ND (0.23)              |
| 1,3-Dichlorobenzene                                | 600                  | ND (0.23)              |                | ND (0.23)              | -                                                | (0.20)                 | ND (0.23)              | ND (0.23)              | -                                                | ND (1.1)              | ND (0.23)              | -              | ND (0.45)              | ND (0.23)              | -              | ND (0.23)              | -                 | ND (0.23)              | ND (0.23)              | -            | ND (0.23)              |
| 1,4-Dichlorobenzene Dichlorodifluoromethane        | 75<br>1000           | ND (0.27)<br>ND (0.90) |                | ND (0.27)<br>ND (0.90) |                                                  | ND (0.27)<br>ND (0.90) | ND (0.27)<br>ND (0.90) | ND (0.27)<br>ND (0.90) | -                                                | ND (1.4)<br>ND (4.5)  | ND (0.27)<br>ND (0.90) | -              | ND (0.55)<br>ND (1.8)  | ND (0.27)<br>ND (0.90) | -              | ND (0.27)<br>ND (0.90) | -                 | ND (0.27)<br>ND (0.90) | ND (0.27)<br>ND (0.90) | -            | ND (0.27)              |
| 1.1-Dichloroethane                                 | 1000                 | ND (0.90)<br>ND (0.17) |                | ND (0.90)<br>ND (0.17) |                                                  | ND (0.90)<br>ND (0.17) | ND (0.90)<br>ND (0.17) | ND (0.90)<br>ND (0.17) | -                                                | ND (4.5)<br>ND (0.86) | ND (0.90)<br>ND (0.17) | 1 -            | ND (1.8)<br>ND (0.34)  | ND (0.90)<br>ND (0.17) | -              | 0.69                   | -                 | ND (0.90)<br>0.68 J    | ND (0.90)<br>0.62      | J -          | ND (0.90)<br>ND (0.17) |
| 1,2-Dichloroethane                                 | 2                    | ND (0.18)              | -              | ND (0.18)              | - 1                                              | ND (0.18)              | ND (0.18)              | 84.9                   | -                                                | 127                   | ND (0.18)              | -              | ND (0.36)              | ND (0.18)              | -              | 106                    | -                 | 109                    | 120                    | -            | 8.2                    |
| 1,1-Dichloroethene                                 | 1                    | ND (0.51)              | -              | ND (0.51)              | -                                                | ND (0.51)              | ND (0.51)              | ND (0.51)              | -                                                | ND (2.6)              | ND (0.51)              | -              | ND (1.0)               | ND (0.51)              | -              | ND (0.51)              | -                 | ND (0.51)              | ND (0.51)              | -            | ND (0.51)              |
| cis-1,2-Dichloroethene<br>trans-1,2-Dichloroethene | 70<br>100            | ND (0.27)<br>ND (0.65) | -              | ND (0.27)<br>ND (0.65) | -                                                | ND (0.27)<br>ND (0.65) | ND (0.27)<br>ND (0.65) | 0.64 J<br>ND (0.65)    | -                                                | ND (1.4)<br>ND (3.2)  | 37.6<br>ND (0.65)      | -              | 38.8<br>ND (1.3)       | ND (0.27)<br>ND (0.65) | -              | 3.3<br>ND (0.65)       | -                 | 3.2<br>ND (0.65)       | 3<br>ND (0.65)         | -            | ND (0.27)<br>ND (0.65) |
| 1,2-Dichloropropane                                | 1                    | ND (0.39)              | -              | ND (0.39)              | <del>-</del> -                                   | ND (0.39)              | ND (0.39)              | ND (0.39)              | -                                                | ND (3.2)              | ND (0.39)              | -              | ND (0.79)              | ND (0.03)              | -              | ND (0.39)              | -                 | ND (0.39)              | ND (0.39)              | -            | ND (0.39)              |
| cis-1,3-Dichloropropene                            | -                    | ND (0.21)              | -              | ND (0.21)              | -                                                | ND (0.21)              | ND (0.21)              | ND (0.21)              | -                                                | ND (1.0)              | ND (0.21)              | -              | ND (0.41)              | ND (0.21)              | -              | ND (0.21)              | -                 | ND (0.21)              | ND (0.21)              | -            | ND (0.21)              |
| trans-1,3-Dichloropropene                          | -                    | ND (0.19)              | -              | ND (0.19)              | -                                                | ND (0.19)              | ND (0.19)              | ND (0.19)              | -                                                | ND (0.93)             | ND (0.19)              | -              | ND (0.37)              | ND (0.19)              | -              | ND (0.19)              | -                 | ND (0.19)              | ND (0.19)              | -            | ND (0.19)              |
| 1,4-Dioxane<br>Ethylbenzene                        | 0.4<br>700           | ND (41)<br>ND (0.27)   |                | ND (41)<br>ND (0.27)   | -                                                | ND (41)<br>ND (0.27)   | ND (41)<br>ND (0.27)   | ND (41)<br>ND (0.27)   | -                                                | ND (200)<br>ND (1.3)  | ND (41)<br>ND (0.27)   | -              | ND (81)<br>ND (0.54)   | ND (41)<br>ND (0.27)   | -              | ND (41)<br>ND (0.27)   | -                 | ND (41)<br>ND (0.27)   | ND (41)<br>ND (0.27)   | -            | ND (41)<br>ND (0.27)   |
| Freon 113                                          | 20000                | ND (0.52)              |                | ND (0.52)              | -                                                | ND (0.52)              | ND (0.52)              | ND (0.52)              | -                                                | ND (2.6)              | ND (0.52)              | -              | ND (1.0)               | ND (0.52)              | -              | ND (0.52)              | -                 | ND (0.52)              | ND (0.52)              | -            | ND (0.52)              |
| 2-Hexanone                                         | -                    | ND (1.7)               |                | ND (1.7)               | -                                                | ND (1.7)               | ND (1.7)               | ND (1.7)               | -                                                | ND (8.7)              | ND (1.7)               | -              | ND (3.5)               | ND (1.7)               | -              | ND (1.7)               | -                 | ND (1.7)               | ND (1.7)               | -            | ND (1.7)               |
| Isopropylbenzene Methyl Acetate                    | 700<br>7000          | ND (0.23)<br>ND (1.9)  |                | ND (0.23)<br>ND (1.9)  | -                                                | ND (0.23)<br>ND (1.9)  | ND (0.23)<br>ND (1.9)  | ND (0.23)<br>ND (1.9)  | -                                                | ND (1.2)<br>ND (9.4)  | ND (0.23)<br>ND (1.9)  | -              | ND (0.47)<br>ND (3.8)  | ND (0.23)<br>ND (1.9)  | -              | 0.65<br>ND (1.9)       | J -               | 0.58 J<br>ND (1.9)     | 0.6<br>ND (1.9)        | J -          | ND (0.23)<br>ND (1.9)  |
| Methylcyclohexane                                  | 7000                 | ND (0.22)              |                | ND (0.22)              | <del>                                     </del> | (=)                    | ND (0.22)              | ND (0.22)              | -                                                | ND (3.4)              | ND (0.22)              | + : +          | ND (0.44)              | ND (0.22)              | -              | (=)                    |                   | ND (1.9)               | ND (0.22)              |              | ND (0.22)              |
| Methyl Tert Butyl Ether                            | 70                   | ND (0.24)              | -              | ND (0.24)              | -                                                | ND (0.24)              | ND (0.24)              | ND (0.24)              | -                                                | ND (1.2)              | ND (0.24)              | -              | ND (0.47)              | ND (0.24)              | -              | ND (0.24)              | -                 | ND (0.24)              | ND (0.24)              | -            | 0.68 J                 |
| 4-Methyl-2-pentanone(MIBK)                         | -                    | ND (1.0)               | -              | ND (1.0)               | -                                                | ND (1.0)               | ND (1.0)               | ND (1.0)               | -                                                | ND (5.1)              | ND (1.0)               | -              | ND (2.0)               | ND (1.0)               | -              | ND (1.0)               | -                 | ND (1.0)               | ND (1.0)               |              | ND (1.0)               |
| Methylene chloride<br>Styrene                      | 3<br>100             | ND (0.73)<br>ND (0.27) |                | ND (0.73)<br>ND (0.27) | -                                                | ND (0.73)<br>ND (0.27) | ND (0.73)<br>ND (0.27) | ND (0.73)<br>ND (0.27) | -                                                | ND (3.6)<br>ND (1.4)  | ND (0.73)<br>ND (0.27) | -              | ND (1.5)<br>ND (0.54)  | 0.88 J<br>ND (0.27)    |                | ND (0.73)<br>ND (0.27) | -                 | ND (0.73)<br>ND (0.27) | ND (0.73)<br>ND (0.27) |              | ND (0.73)<br>ND (0.27) |
| 1,1,2,2-Tetrachloroethane                          | 1                    | ND (0.21)              |                | ND (0.21)              | -                                                | 110 (0.27)             | ND (0.21)              | ND (0.21)              | -                                                | ND (1.0)              | ND (0.21)              | -              | ND (0.41)              | ND (0.21)              | -              | ND (0.21)              | -                 | ND (0.21)              | ND (0.21)              |              | ND (0.21)              |
| Tetrachloroethene                                  | 1                    | ND (0.40)              |                | ND (0.40)              | -                                                | 115 (0.10)             | ND (0.40)              | 3.7                    | -                                                | ND (2.0)              | 1.8                    | -              | 1.3                    | J ND (0.40)            | -              | ND (0.40)              | -                 | ND (0.40)              | ND (0.40)              | -            | 0.75 J                 |
| Toluene                                            | 600                  | ND (0.16)              |                | ND (0.16)              | -                                                | (0.00)                 | ND (0.16)<br>ND (0.23) | 0.37 J<br>0.26 J       | -                                                | ND (0.81)             | ND (0.16)<br>ND (0.23) | -              | ND (0.32)              | ND (0.16)<br>ND (0.23) | -              | ND (0.16)<br>ND (0.23) | -                 | ND (0.16)              | ND (0.16)<br>ND (0.23) | -            | ND (0.16)<br>ND (0.23) |
| 1,2,3-Trichlorobenzene<br>1,2,4-Trichlorobenzene   | 9                    | ND (0.23)<br>ND (0.21) |                | ND (0.23)<br>ND (0.21) |                                                  | ND (0.23)<br>ND (0.21) | ND (0.23)<br>ND (0.21) | 0.26 J<br>0.92 J       | -                                                | ND (1.1)<br>ND (1.0)  | ND (0.23)<br>ND (0.21) | 1 -            | ND (0.45)<br>ND (0.42) | ND (0.23)<br>ND (0.21) | -              | ND (0.23)<br>ND (0.21) | -                 | ND (0.23)<br>ND (0.21) | ND (0.23)<br>ND (0.21) | -            | ND (0.23)<br>ND (0.21) |
| 1,1,1-Trichloroethane                              | 30                   | ND (0.25)              |                | ND (0.25)              | -                                                |                        | ND (0.25)              | ND (0.25)              |                                                  | ND (1.3)              | ND (0.25)              | -              | ND (0.50)              | ND (0.25)              |                | 0.49                   | J -               | 0.54 J                 | 0.53                   | J -          | ND (0.25)              |
| 1,1,2-Trichloroethane                              | 3                    | ND (0.21)              |                | ND (0.21)              | -                                                | (0.22)                 | ND (0.21)              | ND (0.21)              | -                                                |                       | ND (0.21)              | -              | ND (0.43)              | ND (0.21)              | -              | ND (0.21)              | -                 | ND (0.21)              | ND (0.21)              | -            | ND (0.21)              |
| Trichloroethene Trichlorofluoromethane             | 2000                 | ND (0.22)<br>ND (0.43) |                | ND (0.22)<br>ND (0.43) | -                                                | ND (0.22)<br>ND (0.43) | ND (0.22)<br>ND (0.43) | 9.9<br>ND (0.43)       | 1 -                                              | 2.7<br>ND (2.1)       | J 36.4<br>ND (0.43)    | + : +          | 33.3<br>ND (0.86)      | 0.63 J<br>ND (0.43)    | -              | 22.6<br>ND (0.43)      | + -               | 20.5<br>ND (0.43)      | 22.6<br>ND (0.43)      | -            | 1.6<br>ND (0.43)       |
| Vinyl chloride                                     | 2000                 | ND (0.43)<br>ND (0.15) |                | ND (0.43)<br>ND (0.15) | <del>                                     </del> | ND (0.43)<br>ND (0.15) | ND (0.43)<br>ND (0.15) | 0.9 J                  | <del>                                     </del> | ND (2.1)<br>ND (0.74) | ND (0.43)<br>ND (0.15) | + +            | ND (0.86)<br>ND (0.29) | ND (0.43)<br>ND (0.15) | -              | ND (0.43)<br>ND (0.15) | -                 | ND (0.43)<br>ND (0.15) | ND (0.43)<br>ND (0.15) | -            | ND (0.43)<br>ND (0.15) |
| m,p-Xylene                                         | -                    | ND (0.38)              | -              | ND (0.38)              | -                                                | ND (0.38)              | ND (0.38)              | 0.78 J                 | -                                                | ND (1.9)              | ND (0.38)              | -              | ND (0.75)              | ND (0.38)              | -              | ND (0.38)              | -                 | ND (0.38)              | ND (0.38)              | -            | ND (0.38)              |
| o-Xylene                                           | -                    | ND (0.17)              | -              | ND (0.17)              | -                                                | ND (0.17)              | ND (0.17)              | 0.35 J                 | -                                                | ND (0.83)             | ND (0.17)              | -              | ND (0.33)              | ND (0.17)              | -              | ND (0.17)              | -                 | 0.21 J                 | ND (0.17)              | -            | ND (0.17)              |
| Xylene (total)<br>Total VOCs                       | 1000                 | ND (0.17)<br>0         | -              | ND (0.17)              | -                                                | ND (0.17)              | ND (0.17)              | 1.1<br>241.58          | -                                                | ND (0.83)<br>277.1    | ND (0.17)<br>115.28    | -              | ND (0.33)<br>121.2     | ND (0.17)<br>1.81      | -              | ND (0.17)<br>154.46    | -                 | 0.21 J<br>158.91       | ND (0.17)<br>166.48    | -            | ND (0.17)<br>71.34     |
| 100.7003                                           |                      | , ,                    |                | , ,                    | 1 1                                              |                        |                        | 271.30                 |                                                  | 2//.1                 | 113.20                 |                | 161.6                  | 1.01                   |                | 134.40                 |                   | 130.31                 | 100.40                 |              | 72.54                  |
| GC/MS Volatile TIC                                 |                      |                        |                |                        |                                                  |                        |                        |                        |                                                  |                       |                        |                |                        |                        |                |                        |                   |                        |                        |              |                        |
| Total TIC, Volatile                                | -                    | 0                      | -              | 0                      | -                                                | 0                      | 0                      | 0                      | -                                                | 0                     | 0                      | -              | 0                      | 0                      | -              | 21.7                   | J -               | 29.1 J                 | 21.5                   | 1 -          | 9.2 J                  |
| Total Alkanes                                      | -                    | 0                      | -              | 0                      | -                                                | 0                      | 0                      | 0                      | -                                                | 0                     | 0                      | -              | 0                      | 0                      | -              | 0                      | - 1               | 0                      | 0                      | -            | 0                      |
| Metals Analysis                                    |                      |                        |                |                        |                                                  |                        |                        |                        |                                                  |                       |                        |                |                        |                        |                |                        |                   |                        |                        |              |                        |
| Chromium                                           | 70                   |                        |                |                        | <10                                              |                        | - 1                    | 5790 °                 | 6970                                             |                       | 3750 a                 |                |                        | 18.7                   |                | <10                    |                   | · L                    | <10                    |              | 414 <sup>a</sup>       |
| Iron<br>Sodium                                     | 300<br>50000         | -<br><10000            | <100           | <10000                 | <100                                             | -                      | <del>  -  </del>       | 7050000                | 113                                              |                       | 4210000                | 334            | -                      | 10000                  |                | 42100                  | 3930              | -                      | 43400                  | 4190         | 944000                 |
| Socium                                             | 50000                | <10000                 | - 1            | <10000                 | -                                                | -                      | - 1                    | /050000                | -                                                | -                     | 4210000                | -              | -                      | 10000                  | -              | 42100                  | -                 | -                      | 43400                  | -            | 944000                 |
| General Chemistry                                  |                      |                        |                |                        |                                                  |                        |                        |                        |                                                  |                       |                        |                |                        |                        |                |                        |                   |                        |                        |              |                        |
| Solids, Total Dissolved                            | 500000               | <10000                 |                | <10000                 |                                                  | -                      | - 1                    | 25800000               |                                                  | -                     | 15900000               | -              | -                      | 80000                  | -              | 254000                 | -                 | - 1                    | 243000                 | - 1          | 4760000                |
| Sulfate                                            | 250000               | <10000                 | -              | <10000                 | -                                                | -                      | -                      | 8050000                | -                                                | -                     | 3990000                | -              | -                      | 65400                  | -              | 128000                 | -                 | -                      | 125000                 | -            | 1590000                |

|                                                  | Sample ID   |                                          | 2RND1 ISCO-MW- | 7 2RND1 ISCO-MW-9      | 8 2RND1 ISCO-MW-8                       | 2RND1 MW-9             | 2RND1 MW-9  | 2RND1 MW-9 ASC         | ` 2RND1 IW-1-BT2       | 2RND1 IW-1-RT2 | 2RND1 MW-10S           | 2RND1 MW-10S | 2RND1 MW-14SD          | 2RND1 MW-14SD | 2RND1 MW-14SS          | 2RND1 MW-14SS | 2RND2 FB               | 2RND2 FB       | 2RND2 FB               | 2RND2 FR       | 2RND2 TRIPRI ANK       | 2RND2_ISCO-MW-2        | 2RND2_ISCO-MW-2                                  |
|--------------------------------------------------|-------------|------------------------------------------|----------------|------------------------|-----------------------------------------|------------------------|-------------|------------------------|------------------------|----------------|------------------------|--------------|------------------------|---------------|------------------------|---------------|------------------------|----------------|------------------------|----------------|------------------------|------------------------|--------------------------------------------------|
|                                                  | Sample Date | NJ CLASS IIA                             | JB99691-8F     | JB99691-10             | JB99691-10F                             | JB99691-3              | JB99691-3F  | JB99691-17             | JB99691-14             | JB99691-14F    | JB99691-5              | JB99691-5F   | JB99691-2              | JB99691-2F    | JB99691-1              | JB99691-1F    | JC3973-7               | JC3973-7F      | JC3973-14              | JC3973-14F     | JC3973-15              | JC3973-12              | JC3973-12F                                       |
|                                                  | Sample Type | GROUNDWATER QUALITY CRITERIA (7/22/2010) | 7/22/2015      | 7/22/2015              | 7/22/2015                               | 7/22/2015              | 7/22/2015   | 7/23/2015              | 7/23/2015              | 7/23/2015      | 7/22/2015              | 7/22/2015    | 7/22/2015              | 7/22/2015     | 7/22/2015              | 7/22/2015     | 9/15/2015              | 9/15/2015      | 9/16/2015              | 9/16/2015      | 9/16/2015              | 9/16/2015              | 9/16/2015                                        |
|                                                  | Matrix      | up/L                                     | GW-FILTERED    | GW                     | GW-FILTERED                             | GW                     | GW-FILTERED | GW                     | GW                     | GW-FILTERED    | GW                     | GW-FILTERED  | GW                     | GW-FILTERED   | GW                     | GW-FILTERED   | WATER                  | WATER-FILTERED | ) WATER                | WATER-FILTERED | WATER                  | GW                     | GW-FILTERED                                      |
|                                                  | Unit        | -6/ -                                    | ug/L           | ug/L                   | ug/L                                    | ug/L                   | ug/L        | ug/L                   | ug/L                   | ug/L           | ug/L                   | ug/L         | ug/L                   | ug/L          | ug/L                   | ug/L          | ug/L                   | ug/L           | ug/L                   | ug/L           | ug/L                   | ug/L                   | ug/L                                             |
| Volatile Organic Compounds                       | s (VOCs)    | ****                                     |                |                        | , , , , , , , , , , , , , , , , , , , , | 112 (2.0)              | , ,         |                        |                        |                | (0.0)                  |              |                        |               | (0.0)                  |               |                        |                | 112 (2.2)              |                | 210 (0.0)              |                        |                                                  |
| Acetone<br>Benzene                               |             | 6000<br>1                                | -              | 16.6<br>ND (0.24)      | -                                       | ND (3.3)<br>ND (0.24)  | -           |                        | J 24.4<br>ND (0.24)    | -              | ND (3.3)<br>ND (0.24)  | -            | ND (3.3)<br>ND (0.24)  | -             | ND (3.3)<br>ND (0.24)  | -             | ND (3.3)<br>ND (0.24)  |                | ND (3.3)<br>ND (0.24)  | -              | ND (3.3)<br>ND (0.24)  | 195<br>0.53 J          | -                                                |
| Bromochloromethane                               |             | -                                        | -              | ND (0.37)              | -                                       | ND (0.37)              | -           | ND (0.37)              | ND (0.37)              | -              | ND (0.37)              | -            | ND (0.37)              | -             | ND (0.37)              | -             | ND (0.37)              | -              | ND (0.37)              | -              | ND (0.37)              | ND (0.74)              | - 1                                              |
| Bromodichloromethane                             |             | 1                                        | -              | ND (0.23)              | -                                       | ND (0.23)              | -           | ND (0.23)              | ND (0.23)              | -              | ND (0.23)              | -            | ND (0.23)              | -             | ND (0.23)              | -             | ND (0.23)              |                | ND (0.23)              | -              | ND (0.23)              | ND (0.45)              | -                                                |
| Bromoform                                        |             | 4                                        | -              | ND (0.23)              | -                                       | ND (0.23)              | -           | ND (0.23)              | ND (0.23)              | -              | ND (0.23)              | -            | ND (0.23)              | -             | ND (0.23)              | -             | ND (0.23)              |                | ND (0.23)              | -              | ND (0.23)              | ND (0.47)              | -                                                |
| Bromomethane<br>2-Butanone (MEK)                 |             | 10<br>300                                | -              | ND (0.42)<br>ND (5.6)  | -                                       | ND (0.42)<br>ND (5.6)  | -           | ND (0.42)<br>ND (5.6)  | ND (0.42)<br>ND (5.6)  | -              | ND (0.42)<br>ND (5.6)  | -            | ND (0.42)<br>ND (5.6)  | -             | ND (0.42)<br>ND (5.6)  | -             | ND (0.42)<br>ND (5.6)  | -              | ND (0.42)<br>ND (5.6)  | -              | ND (0.42)<br>ND (5.6)  | ND (0.85)<br>13.2 J    | -                                                |
| Carbon disulfide                                 |             | 700                                      | -              | 1.1                    | J -                                     | ND (0.25)              | -           |                        | ND (0.25)              | -              | ND (0.25)              | -            | ND (0.25)              |               | ND (0.25)              | -             | ND (0.25)              | -              | ND (0.25)              | -              | ND (0.25)              | ND (0.51)              | -                                                |
| Carbon tetrachloride                             |             | 1                                        | -              | 0.5                    | J -                                     | ND (0.22)              | -           | ND (0.22)              | ND (0.22)              | -              | ND (0.22)              | -            | ND (0.22)              | -             | U.23 J                 |               | ND (0.22)              | -              | ND (0.22)              | -              | ND (0.22)              | ND (0.44)              | -                                                |
| Chlorobenzene<br>Chloroethane                    |             | 50                                       | -              | ND (0.19)<br>ND (0.34) | -                                       | ND (0.19)<br>ND (0.34) |             | ND (0.19)<br>ND (0.34) |                        |                | ND (0.19)<br>ND (0.34) | -            | ND (0.19)<br>ND (0.34) | -             | ND (0.19)<br>ND (0.34) | -             | ND (0.19)<br>ND (0.34) | -              | ND (0.19)<br>ND (0.34) | -              | ND (0.19)<br>ND (0.34) | ND (0.37)<br>ND (0.68) |                                                  |
| Chloroform                                       |             | 70                                       | -              | ND (0.34)              | , -                                     | ND (0.34)<br>ND (0.19) | -           |                        | ND (0.34)<br>ND (0.19) | -              | ND (0.19)              | -            | 0.24 J                 | -             |                        | -             | ND (0.19)              | -              | ND (0.34)<br>ND (0.19) | -              | ND (0.34)<br>ND (0.19) | 1.3 J                  |                                                  |
| Chloromethane                                    |             | -                                        | -              | ND (0.41)              | -                                       | ND (0.41)              | -           | ND (0.41)              | ND (0.41)              | -              | ND (0.41)              | -            | ND (0.41)              | -             | ND (0.41)              | -             | ND (0.41)              | -              | ND (0.41)              | -              | ND (0.41)              | 4.1                    | -                                                |
| Cyclohexane                                      |             | -                                        | -              | ND (0.28)              |                                         | ND (0.28)              | -           | (0.20)                 | ND (0.28)              |                | ND (0.28)              |              | ND (0.28)              |               | ND (0.28)              |               | ND (0.28)              |                | ND (0.28)              | -              | ND (0.28)              | ND (0.56)              | -                                                |
| 1,2-Dibromo-3-chloropropane Dibromochloromethane |             | 0.02                                     | -              | ND (0.99)<br>ND (0.15) |                                         | ND (0.99)<br>ND (0.15) | -           | ND (0.99)<br>ND (0.15) | ND (0.99)<br>ND (0.15) | -              | ND (0.99)<br>ND (0.15) | -            | ND (0.99)<br>ND (0.15) | -             | ND (0.99)<br>ND (0.15) |               | ND (0.99)<br>ND (0.15) |                | ND (0.99)<br>ND (0.15) | -              | ND (0.99)<br>ND (0.15) | ND (2.0)<br>ND (0.31)  | <del>                                     </del> |
| 1,2-Dibromoethane                                |             | 0.03                                     | -              | ND (0.13)              |                                         | ND (0.13)              | - 1         | (0.20)                 | ND (0.13)              | -              | ND (0.23)              |              | ND (0.23)              | -             | 110 (0.13)             |               | ND (0.13)              |                | ND (0.13)              |                | ND (0.13)              | ND (0.46)              |                                                  |
| 1,2-Dichlorobenzene                              |             | 600                                      | -              | ND (0.19)              |                                         | ND (0.19)              | -           | ND (0.19)              | ND (0.19)              | -              | ND (0.19)              |              | ND (0.19)              | -             | ND (0.19)              |               | ND (0.19)              | -              | ND (0.19)              | -              | ND (0.19)              | ND (0.37)              | -                                                |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene       |             | 600<br>75                                | -              | ND (0.23)<br>ND (0.27) | -                                       | ND (0.23)<br>ND (0.27) | -           | ND (0.23)<br>ND (0.27) | ND (0.23)<br>ND (0.27) | -              | ND (0.23)<br>ND (0.27) |              | ND (0.23)<br>ND (0.27) | -             | ND (0.23)<br>ND (0.27) | -             | ND (0.23)<br>ND (0.27) |                | ND (0.23)<br>ND (0.27) | -              | ND (0.23)<br>ND (0.27) | ND (0.45)<br>ND (0.55) | -                                                |
| Dichlorodifluoromethane                          |             | 1000                                     | -              | ND (0.27)<br>ND (0.90) |                                         | ND (0.27)<br>ND (0.90) | -           |                        | ND (0.27)<br>ND (0.90) | -              | ND (0.27)<br>ND (0.90) |              | ND (0.27)<br>ND (0.90) |               | ND (0.27)<br>ND (0.90) |               | ND (0.27)<br>ND (0.90) |                | ND (0.27)<br>ND (0.90) |                | ND (0.27)<br>ND (0.90) | ND (0.55)<br>ND (1.8)  |                                                  |
| 1,1-Dichloroethane                               |             | 50                                       | -              | ND (0.17)              | -                                       | ND (0.17)              | -           | ND (0.17)              | (0)                    | -              | ND (0.17)              |              | ND (0.17)              | -             | ND (0.17)              | -             | ND (0.17)              |                | ND (0.17)              | -              | ND (0.17)              | ND (0.34)              | -                                                |
| 1,2-Dichloroethane                               |             | 2                                        | -              | 0.31                   | J -                                     | ND (0.18)              | -           | ND (0.18)              | ND (0.18)              | -              | 3.2                    | -            | ND (0.18)              | -             | ND (0.18)              | -             | ND (0.18)              | -              | ND (0.18)              | -              | ND (0.18)              | 308                    | -                                                |
| 1,1-Dichloroethene<br>cis-1,2-Dichloroethene     |             | 1<br>70                                  | -              | ND (0.51)<br>ND (0.27) | -                                       | ND (0.51)<br>0.51 J    | -           | ND (0.51)<br>0.3       | ND (0.51)<br>J 7.8     | -              | ND (0.51)<br>ND (0.27) | -            | ND (0.51)<br>ND (0.27) | -             | ND (0.51)<br>ND (0.27) | -             | ND (0.51)<br>ND (0.27) |                | ND (0.51)<br>ND (0.27) | -              | ND (0.51)<br>ND (0.27) | ND (1.0)<br>ND (0.55)  | -                                                |
| trans-1,2-Dichloroethene                         |             | 100                                      | -              | ND (0.65)              | -                                       | ND (0.65)              | -           | ND (0.65)              | ND (0.65)              | -              | ND (0.65)              | -            | ND (0.65)              | -             | ND (0.65)              | -             | ND (0.65)              | -              | ND (0.65)              | -              | ND (0.65)              | ND (1.3)               | -                                                |
| 1,2-Dichloropropane                              |             | 1                                        | -              | ND (0.39)              | -                                       | ND (0.39)              | -           | ND (0.39)              | ND (0.39)              | -              | ND (0.39)              | -            | ND (0.39)              | -             | ND (0.39)              | -             | ND (0.39)              | -              | ND (0.39)              | -              | ND (0.39)              | ND (0.79)              | -                                                |
| cis-1,3-Dichloropropene                          |             | -                                        | -              | ND (0.21)              | -                                       | ND (0.21)              | -           | ND (0.21)              | ND (0.21)              | -              | ND (0.21)              | -            | ND (0.21)              | -             | ND (0.21)              | -             | ND (0.21)              |                | ND (0.21)              | -              | ND (0.21)              | ND (0.41)              | -                                                |
| trans-1,3-Dichloropropene<br>1,4-Dioxane         |             | 0.4                                      | -              | ND (0.19)<br>ND (41)   | -                                       | ND (0.19)<br>ND (41)   | -           | ND (0.19)<br>ND (41)   | ND (0.19)<br>ND (41)   | -              | ND (0.19)<br>ND (41)   | -            | ND (0.19)<br>ND (41)   | -             | ND (0.19)<br>ND (41)   | -             | ND (0.19)<br>ND (41)   |                | ND (0.19)<br>ND (41)   | -              | ND (0.19)<br>ND (41)   | ND (0.37)<br>ND (81)   | -                                                |
| Ethylbenzene                                     |             | 700                                      | -              | ND (0.27)              | -                                       | ND (0.27)              | -           |                        | ND (0.27)              | -              | ND (0.27)              | -            | ND (0.27)              | -             | ND (0.27)              |               | ND (0.27)              | -              | ND (0.27)              | -              | ND (0.27)              | ND (0.54)              | -                                                |
| Freon 113                                        |             | 20000                                    | -              | ND (0.52)              |                                         | ND (0.52)              | -           |                        | ND (0.52)              | -              | ND (0.52)              | -            | ND (0.52)              |               | ND (0.52)              | -             | ND (0.52)              | -              | ND (0.52)              | -              | ND (0.52)              | ND (1.0)               | -                                                |
| 2-Hexanone                                       |             | 700                                      | -              | ND (1.7)<br>ND (0.23)  |                                         | ND (1.7)<br>ND (0.23)  | -           | ND (1.7)<br>ND (0.23)  | ND (1.7)<br>ND (0.23)  | -              | ND (1.7)<br>ND (0.23)  | -            | ND (1.7)<br>ND (0.23)  | -             |                        |               | ND (1.7)<br>ND (0.23)  |                | ND (1.7)<br>ND (0.23)  | -              | ND (1.7)<br>ND (0.23)  | ND (3.5)<br>ND (0.47)  | -                                                |
| Isopropylbenzene<br>Methyl Acetate               |             | 7000                                     | -              | ND (0.23)              |                                         | ND (0.23)              | -           | ND (0.23)              | ND (1.9)               | -              | ND (0.23)              | -            | ND (0.23)              | -             | 140 (0.23)             |               | ND (0.23)              |                | ND (0.23)              | -              | ND (0.23)              | ND (3.8)               | -                                                |
| Methylcyclohexane                                |             | -                                        | -              | ND (0.22)              | -                                       | ND (0.22)              | -           |                        | ND (0.22)              | -              | ND (0.22)              | -            | ND (0.22)              | -             | ND (0.22)              |               | ND (0.22)              | -              | ND (0.22)              | -              | ND (0.22)              | ND (0.44)              | -                                                |
| Methyl Tert Butyl Ether                          |             | 70                                       | -              | ND (0.24)              | -                                       | ND (0.24)              | -           | ND (0.24)              | ND (0.24)              | -              | ND (0.24)              | -            | ND (0.24)              | -             | 140 (0.24)             |               | ND (0.24)              | -              | ND (0.24)              | -              | ND (0.24)              | ND (0.47)              | -                                                |
| 4-Methyl-2-pentanone(MIBK)                       |             | - 3                                      | -              | ND (1.0)<br>ND (0.73)  | -                                       | ND (1.0)<br>ND (0.73)  | -           | ND (1.0)               | ND (1.0)               | -              | ND (1.0)<br>ND (0.73)  | -            | ND (1.0)               | -             | ND (1.0)<br>ND (0.73)  |               | ND (1.0)<br>ND (0.73)  | -              | ND (1.0)<br>ND (0.73)  | -              | ND (1.0)<br>ND (0.73)  | ND (2.0)<br>ND (1.5)   | -                                                |
| Methylene chloride<br>Styrene                    |             | 100                                      | -              | ND (0.73)<br>ND (0.27) | -                                       | ND (0.73)<br>ND (0.27) |             | 110 (0.75)             | ND (0.73)<br>ND (0.27) |                | ND (0.73)<br>ND (0.27) |              | ND (0.73)<br>ND (0.27) |               | ND (0.73)<br>ND (0.27) |               | ND (0.73)<br>ND (0.27) |                | ND (0.73)<br>ND (0.27) | -              | ND (0.73)<br>ND (0.27) | ND (1.5)               | -                                                |
| 1,1,2,2-Tetrachloroethane                        |             | 1                                        | -              | ND (0.21)              |                                         | ND (0.21)              | -           |                        | ND (0.21)              | -              | ND (0.21)              | -            | ND (0.21)              | -             |                        |               | ND (0.21)              |                | ND (0.21)              | -              | ND (0.21)              | 2.6                    | -                                                |
| Tetrachloroethene                                |             | 1                                        | -              | 0.78                   | •                                       | 1.3                    | -           |                        | 0.65 J                 | -              | ND (0.40)              | -            | ND (0.40)              |               | ND (0.40)              |               | ND (0.40)              |                | ND (0.40)              | -              | ND (0.40)              | 1.7 J                  | -                                                |
| Toluene<br>1,2,3-Trichlorobenzene                |             | 600                                      | -              | ND (0.16)<br>ND (0.23) |                                         | ND (0.16)<br>ND (0.23) | -           | 0.2<br>ND (0.23)       | ND (0.16)<br>ND (0.23) | -              | ND (0.16)<br>ND (0.23) | -            | ND (0.16)<br>ND (0.23) | -             | ND (0.16)<br>ND (0.23) |               | ND (0.16)<br>ND (0.23) |                | ND (0.16)<br>ND (0.23) | -              | ND (0.16)<br>ND (0.23) | ND (0.32)<br>ND (0.45) | -                                                |
| 1,2,4-Trichlorobenzene                           |             | 9                                        | _              | ND (0.23)              |                                         | ND (0.21)              | <u>-</u>    | ND (0.23)              | ND (0.21)              | -              | ND (0.21)              |              | ND (0.21)              | -             |                        |               | ND (0.23)              |                | ND (0.23)              | _              | ND (0.23)              | ND (0.42)              | <u>-</u>                                         |
| 1,1,1-Trichloroethane                            |             | 30                                       | -              | ND (0.25)              | -                                       | ND (0.25)              | -           | ND (0.25)              | ND (0.25)              | -              | ND (0.25)              |              | ND (0.25)              |               | ND (0.25)              | -             | ND (0.25)              |                | ND (0.25)              | -              | ND (0.25)              | ND (0.50)              | -                                                |
| 1,1,2-Trichloroethane Trichloroethene            |             | 3                                        | -              | ND (0.21)              | -                                       | ND (0.21)<br>13.3      | -           | ND (0.21)<br>10.4      | ND (0.21)<br>17.7      | -              | ND (0.21)<br>0.34 J    |              | ND (0.21)<br>ND (0.22) | -             | ND (0.21)<br>ND (0.22) | -             | ND (0.21)<br>ND (0.22) |                | ND (0.21)<br>ND (0.22) | -              | ND (0.21)<br>ND (0.22) | ND (0.43)<br>5.7       | -                                                |
| Trichlorofluoromethane                           |             | 2000                                     | -              | ND (0.43)              |                                         | ND (0.43)              | -           | ND (0.43)              | ND (0.43)              | -              | ND (0.43)              |              | ND (0.22)<br>ND (0.43) |               | ND (0.22)<br>ND (0.43) |               | ND (0.22)<br>ND (0.43) |                | ND (0.22)<br>ND (0.43) |                | ND (0.22)<br>ND (0.43) | ND (0.86)              |                                                  |
| Vinyl chloride                                   |             | 1                                        | -              | ND (0.15)              |                                         | ND (0.15)              | - 1         | ND (0.15)              | ND (0.15)              | -              | ND (0.15)              | -            | ND (0.15)              | -             | ND (0.15)              | -             | ND (0.15)              | -              | ND (0.15)              | -              | ND (0.15)              | ND (0.29)              | -                                                |
| m,p-Xylene                                       |             | -                                        | -              | ND (0.38)              | -                                       | ND (0.38)              | -           | ND (0.38)              | ND (0.38)              | -              | ND (0.38)              | -            | ND (0.38)              | -             | ND (0.38)              | -             | ND (0.38)              |                | ND (0.38)              | -              | ND (0.38)              | ND (0.75)              | -                                                |
| o-Xylene<br>Xylene (total)                       |             | 1000                                     | -              | ND (0.17)<br>ND (0.17) | + -                                     | ND (0.17)<br>ND (0.17) | -           | ND (0.17)<br>ND (0.17) | ND (0.17)<br>ND (0.17) | -              | ND (0.17)<br>ND (0.17) | -            | ND (0.17)<br>ND (0.17) | -             | ND (0.17)<br>ND (0.17) |               | ND (0.17)<br>ND (0.17) |                | ND (0.17)<br>ND (0.17) | -              | ND (0.17)<br>ND (0.17) | ND (0.33)<br>ND (0.33) | -                                                |
| Total VOCs                                       |             | -                                        |                | 22.55                  |                                         | 15.11                  | -           |                        | 50.55                  |                | 3.54                   |              | 0.24                   | -             |                        | -             |                        |                | 0                      |                | 0                      | 532.13                 |                                                  |
|                                                  |             |                                          | •              |                        |                                         |                        |             | •                      |                        |                |                        |              |                        |               |                        |               |                        |                |                        |                |                        |                        |                                                  |
| GC/MS Volatile TIC                               |             |                                          | ,              |                        | , , ,                                   |                        | ,           | , ,                    |                        |                |                        |              |                        | , ,           |                        |               |                        | ,              | 1 0 1                  | ,              |                        | , ,                    | ,                                                |
| Total TIC, Volatile<br>Total Alkanes             |             | -                                        | -              | 0                      | + - +                                   | 0                      | -           | 0                      | 0                      | -              | 0                      | -            | 0                      |               | 0                      |               | 0                      | -              | 0                      | -              | 0                      | 0                      | -                                                |
| rotar ringings                                   | I           | -                                        | -              |                        | -                                       |                        | - 1         |                        |                        | -              | · · ·                  | -            |                        | -             |                        | -             |                        |                |                        | - 1            | <u> </u>               |                        |                                                  |
| Metals Analysis                                  |             |                                          |                |                        |                                         |                        |             |                        |                        |                |                        |              |                        |               |                        |               |                        |                |                        |                |                        |                        |                                                  |
| Chromium                                         |             | 70                                       | 583            |                        | 3070                                    |                        | <10         |                        | 3540 °                 | 3710           | 13.1                   | <10          | <10                    | <10           |                        | <10           | <10                    | <10            | <10                    | <10            |                        |                        |                                                  |
| Iron<br>Sodium                                   |             | 300<br>50000                             | 345            | 3150000                | 590                                     | 80200                  | <100        |                        | 1340000                | 158            | 31000                  | <100         | 171000                 | <100          | 171000                 | <100          | <10000                 | <100           | <10000                 | <100           | -                      | 6440000                | 144                                              |
| Journal                                          | l.          | 30000                                    | - 1            | 3130000                |                                         | 00200                  | <u> </u>    | <u> </u>               | 1340000                | · · ·          | 31000                  | <u> </u>     | 1/1000                 | -             | 1/1000                 |               | <10000                 | <u> </u>       | <10000                 |                | -                      | 0440000                | · ·                                              |
| General Chemistry                                |             |                                          |                |                        |                                         |                        |             |                        |                        |                |                        |              |                        |               |                        |               |                        |                |                        |                |                        |                        |                                                  |
| Solids, Total Dissolved                          |             | 500000                                   | -              | 11400000               | -                                       | 546000<br>219000       | -           | -                      | 5310000                | -              | 235000<br>108000       | -            | 970000<br>295000       | -             | 990000                 | -             | <10000<br><10000       | - 1            | <10000<br><10000       |                |                        | 26100000<br>11900000   | - 1                                              |
| Sulfate                                          |             | 250000                                   |                |                        |                                         |                        |             |                        |                        |                |                        |              |                        |               |                        |               |                        |                |                        |                |                        |                        |                                                  |

| Samnle II                                            | n.                     | 2RND2_ISCO-MW-3        | 3 2RND2 ISCO-MW-3                                | 2RND2_ISCO-MW-         | 4 2RND2 ISCO-MW- | 1 2RND2 ISCO-MW         | 5 2RND2 ISCO-MW- | 5 2RND2 ISCO-MW-7      | 2RND2 ISCO-MW                                    | -7 2RND2 ISCO-MW-      | -8 2RND2 ISCO-MW-8 2                              | ZRND2 ISCO-MW          | -9 2RND2 ISCO-MW- | 9 2RND2 IW1-BT-2       | 2RND2_IW1-BT-2 | 2 2RND2 DUP            | 2RND2 DUP   | 2RND2 MW-14SD          | 2RND2 MW-14SD                                    | 2RND2 MW-14SS          | 2RND2 MW-1455                                    |
|------------------------------------------------------|------------------------|------------------------|--------------------------------------------------|------------------------|------------------|-------------------------|------------------|------------------------|--------------------------------------------------|------------------------|---------------------------------------------------|------------------------|-------------------|------------------------|----------------|------------------------|-------------|------------------------|--------------------------------------------------|------------------------|--------------------------------------------------|
| Sample Date                                          | NJ CLASS IIA           | JC3973-11              | JC3973-11F                                       | JC3973-1               | JC3973-1F        | JC3973-6                | JC3973-6F        | JC3973-8               | JC3973-8F                                        | JC3973-13              | JC3973-13F                                        | JC3973-5               | JC3973-5F         | JC3973-9               | JC3973-9F      | JC3973-10              | JC3973-10F  | JC3973-2               | JC3973-2F                                        | JC3973-3               | JC3973-3F                                        |
| Sample Typ                                           | GROUNDWATER QUALITY    | 9/16/2015              | 9/16/2015                                        | 9/15/2015              | 9/15/2015        | 9/15/2015               | 9/15/2015        | 9/15/2015              | 9/15/2015                                        | 9/16/2015              | 9/16/2015                                         | 9/15/2015              | 9/15/2015         | 9/16/2015              | 9/16/2015      | 9/16/2015              | 9/16/2015   | 9/15/2015              | 9/15/2015                                        | 9/15/2015              | 9/15/2015                                        |
| Matri                                                | Y CRITERIA (7/22/2010) | GW                     | GW-FILTERED                                      | GW                     | GW-FILTERED      | GW                      | GW-FILTERED      | GW                     | GW-FILTERED                                      | GW                     | GW-FILTERED                                       | GW                     | GW - FILTERED     | GW                     | GW-FILTERED    | GW                     | GW-FILTERED |                        | GW-FILTERED                                      | GW                     | GW-FILTERED                                      |
| Uni                                                  | nug/L<br>it            | ug/L                   | ug/L                                             | ug/L                   | ug/L             | ug/L                    | ug/L             | ug/L                   | ug/L                                             | ug/L                   | ug/L                                              | ug/L                   | ug/L              | ug/L                   | ug/L           | ug/L                   | ug/L        | ug/L                   | ug/L                                             | ug/L                   | ug/L                                             |
| Volatile Organic Compounds (VOCs)                    |                        |                        |                                                  |                        |                  |                         |                  |                        |                                                  |                        |                                                   |                        |                   |                        |                |                        |             |                        |                                                  |                        |                                                  |
| Acetone                                              | 6000                   | 13.5                   | -                                                | ND (3.3)               | -                | ND (3.3)                | -                | 83.1                   | -                                                | 22.9                   | -                                                 | ND (3.3)               | -                 | 13.3                   | -              | 13.6                   | -           | ND (3.3)               | -                                                | ND (3.3)               | -                                                |
| Benzene                                              | 1                      | ND (0.24)              | -                                                | ND (0.24)              | -                | 0.79                    | -                | ND (0.24)              | -                                                | ND (0.24)              | - +                                               | ND (0.24)              | -                 | ND (0.24)              | -              | ND (0.24)              | -           | ND (0.24)              | -                                                | ND (0.24)              |                                                  |
| Bromochloromethane<br>Bromodichloromethane           | 1                      | ND (0.37)<br>ND (0.23) | -                                                | ND (0.37)<br>ND (0.23) | -                | ND (0.37)<br>ND (0.23)  | -                | ND (0.37)<br>ND (0.23) | -                                                | ND (0.37)<br>ND (0.23) | <del>- +</del>                                    | ND (0.37)<br>ND (0.23) | -                 | ND (0.37)<br>ND (0.23) |                | ND (0.37)<br>ND (0.23) | -           | ND (0.37)<br>ND (0.23) | -                                                | ND (0.37)<br>ND (0.23) |                                                  |
| Bromoform                                            | 4                      | ND (0.23)              | -                                                | ND (0.23)              | -                | ND (0.23)               | -                | ND (0.23)              | -                                                | ND (0.23)              | <del> +</del>                                     | ND (0.23)              | -                 | ND (0.23)              | 1 - 1          | ND (0.23)              | -           | ND (0.23)              | -                                                | ND (0.23)              | +                                                |
| Bromomethane                                         | 10                     | ND (0.42)              | -                                                | ND (0.42)              | -                | ND (0.42)               | -                | 9.7                    | -                                                | ND (0.42)              | -                                                 | ND (0.42)              | -                 | ND (0.42)              | -              | ND (0.42)              | -           | ND (0.42)              | -                                                | ND (0.42)              | -                                                |
| 2-Butanone (MEK)                                     | 300                    | ND (5.6)               | -                                                | ND (5.6)               | -                | ND (5.6)                | -                | ND (5.6)               | -                                                | ND (5.6)               | -                                                 | ND (5.6)               |                   | ND (5.6)               |                | ND (5.6)               | -           | ND (5.6)               | -                                                | ND (5.6)               |                                                  |
| Carbon disulfide Carbon tetrachloride                | 700                    | ND (0.25)<br>ND (0.22) | -                                                | 1.1 ND (0.22)          | J -              | ND (0.25)<br>ND (0.22)  | -                | ND (0.25)<br>0.95      | -                                                | 0.62<br>ND (0.22)      | J -                                               | ND (0.25)<br>ND (0.22) |                   | ND (0.25)<br>ND (0.22) |                | ND (0.25)<br>ND (0.22) | -           | ND (0.25)<br>0.62 J    | -                                                | ND (0.25)<br>0.59 J    | + -                                              |
| Chlorobenzene                                        | 50                     | ND (0.22)              | -                                                |                        | -                | ND (0.19)               |                  | ND (0.19)              | -                                                | ND (0.22)<br>ND (0.19) | 1 1                                               | ND (0.19)              | -                 | ND (0.22)<br>ND (0.19) |                | ND (0.19)              | -           | ND (0.19)              | -                                                |                        | <del></del>                                      |
| Chloroethane                                         | 5                      | ND (0.34)              | -                                                | ND (0.34)              | -                | ND (0.34)               | -                | ND (0.34)              | -                                                | ND (0.34)              | -                                                 | ND (0.34)              | -                 | ND (0.34)              | -              | ND (0.34)              | -           | ND (0.34)              | -                                                | ND (0.34)              | -                                                |
| Chloroform                                           | 70                     | 0.32 J                 | -                                                |                        |                  | ND (0.19)               | -                | 1.9                    | -                                                | ND (0.19)              |                                                   | ND (0.19)              | -                 | 0.22 J                 |                | ND (0.19)              | -           | 0.59 J                 |                                                  | 0.57                   |                                                  |
| Chloromethane<br>Cyclohexane                         | -                      | ND (0.41)<br>ND (0.28) |                                                  | ND (0.41)<br>ND (0.28) |                  | ND (0.41)<br><b>0.5</b> |                  | 3.9<br>ND (0.28)       | -                                                | ND (0.41)<br>ND (0.28) | <del> +</del>                                     | ND (0.41)<br>ND (0.28) |                   | ND (0.41)<br>ND (0.28) |                | ND (0.41)<br>ND (0.28) | -           | ND (0.41)<br>ND (0.28) | -                                                | ND (0.41)<br>ND (0.28) | +                                                |
| 1,2-Dibromo-3-chloropropane                          | 0.02                   | ND (0.28)<br>ND (0.99) | -                                                |                        |                  | ND (0.99)               |                  | ND (0.28)<br>ND (0.99) | <del>                                     </del> | ND (0.28)<br>ND (0.99) | <del>                                     </del>  | ND (0.28)<br>ND (0.99) |                   | ND (0.28)<br>ND (0.99) |                | ND (0.28)<br>ND (0.99) | + - +       | ND (0.28)<br>ND (0.99) | -                                                | 140 (0.20)             | + -                                              |
| Dibromochloromethane                                 | 1                      | ND (0.15)              |                                                  | ND (0.15)              | -                | ND (0.15)               | -                | ND (0.15)              | -                                                | ND (0.15)              | - 1                                               | ND (0.15)              |                   | ND (0.15)              | -              | ND (0.15)              | -           | ND (0.15)              |                                                  | ND (0.15)              | -                                                |
| 1,2-Dibromoethane                                    | 0.03                   | ND (0.23)              | -                                                | ND (0.23)              |                  | ND (0.23)               |                  | ND (0.23)              | -                                                | ND (0.23)              | 1 - 11                                            | ND (0.23)              |                   | ND (0.23)              |                | ND (0.23)              |             | ND (0.23)              | -                                                | 140 (0.23)             |                                                  |
| 1,2-Dichlorobenzene<br>1,3-Dichlorobenzene           | 600<br>600             | ND (0.19)<br>ND (0.23) | -                                                | 140 (0.13)             | -                | ND (0.19)<br>ND (0.23)  |                  | ND (0.19)<br>ND (0.23) | -                                                | ND (0.19)<br>ND (0.23) | + : ++                                            | ND (0.19)<br>ND (0.23) |                   | ND (0.19)<br>ND (0.23) |                | ND (0.19)<br>ND (0.23) |             | ND (0.19)<br>ND (0.23) | <del>                                     </del> | ND (0.19)<br>ND (0.23) | +                                                |
| 1,4-Dichlorobenzene                                  | 75                     | ND (0.23)<br>ND (0.27) | -                                                |                        | -                | ND (0.23)               |                  | ND (0.23)              | -                                                | ND (0.23)              | <del> +</del>                                     | ND (0.23)              |                   | ND (0.23)<br>ND (0.27) |                | ND (0.27)              | -           | ND (0.27)              | -                                                |                        | +                                                |
| Dichlorodifluoromethane                              | 1000                   | ND (0.90)              |                                                  | ND (0.90)              |                  | ND (0.90)               | -                | ND (0.90)              | -                                                | ND (0.90)              | - 1                                               | ND (0.90)              | -                 | ND (0.90)              | -              | ND (0.90)              |             | ND (0.90)              | -                                                | ND (0.90)              |                                                  |
| 1,1-Dichloroethane                                   | 50                     | ND (0.17)              | -                                                | ND (0.17)              | -                | 0.89                    |                  | ND (0.17)              | -                                                | ND (0.17)              |                                                   | ND (0.17)              |                   | ND (0.17)              |                | ND (0.17)              | -           | ND (0.17)              | -                                                | ND (0.17)              |                                                  |
| 1,2-Dichloroethane<br>1.1-Dichloroethene             | 1                      | 0.28 J<br>ND (0.51)    | -                                                | 1.4<br>ND (0.51)       | -                | 137<br>ND (0.51)        |                  | 16.5<br>ND (0.51)      | -                                                | 1.7<br>ND (0.51)       | <del>- +</del>                                    | ND (0.18)<br>ND (0.51) | -                 | ND (0.18)<br>ND (0.51) |                | ND (0.18)<br>ND (0.51) | -           | ND (0.18)<br>ND (0.51) | -                                                | ND (0.18)<br>ND (0.51) | +                                                |
| cis-1,2-Dichloroethene                               | 70                     | 73.4                   | -                                                | ND (0.31)              | -                | 4.7                     | -                | ND (0.31)              | -                                                | ND (0.31)              | <del> </del>                                      | ND (0.27)              | -                 | 3.5                    | -              | 3.4                    | -           | ND (0.27)              | -                                                | ND (0.27)              | <del> </del>                                     |
| trans-1,2-Dichloroethene                             | 100                    | 1.1                    | -                                                | ND (0.65)              | -                | ND (0.65)               | -                | ND (0.65)              | -                                                | ND (0.65)              | -                                                 | ND (0.65)              | -                 | ND (0.65)              | -              | ND (0.65)              | -           | ND (0.65)              | -                                                | ND (0.65)              | -                                                |
| 1,2-Dichloropropane                                  | 1                      | ND (0.39)              | -                                                | ND (0.39)              | -                | ND (0.39)               | -                | ND (0.39)              | -                                                | ND (0.39)              | -                                                 | ND (0.39)              | -                 | ND (0.39)              | -              | ND (0.39)              | -           | ND (0.39)              | -                                                | ND (0.39)              | -                                                |
| cis-1,3-Dichloropropene<br>trans-1,3-Dichloropropene | -                      | ND (0.21)<br>ND (0.19) | -                                                | ND (0.21)<br>ND (0.19) | -                | ND (0.21)<br>ND (0.19)  | -                | ND (0.21)<br>ND (0.19) | -                                                | ND (0.21)<br>ND (0.19) | <del>- +</del>                                    | ND (0.21)<br>ND (0.19) | -                 | ND (0.21)<br>ND (0.19) |                | ND (0.21)<br>ND (0.19) | -           | ND (0.21)<br>ND (0.19) | -                                                | ND (0.21)<br>ND (0.19) | +                                                |
| 1,4-Dioxane                                          | 0.4                    | ND (41)                | -                                                | ND (0.13)              | -                | ND (41)                 |                  | ND (0.13)              | -                                                | ND (0.13)<br>ND (41)   | <del> +</del>                                     | ND (41)                | -                 | ND (0.13)              | 1 - 1          | ND (41)                | -           | ND (41)                | -                                                | ND (0.13)<br>ND (41)   | + - + +                                          |
| Ethylbenzene                                         | 700                    | ND (0.27)              | -                                                | ND (0.27)              | -                | ND (0.27)               | -                | ND (0.27)              | -                                                | ND (0.27)              | -                                                 | ND (0.27)              |                   | ND (0.27)              | -              | ND (0.27)              | -           | ND (0.27)              | -                                                | ND (0.27)              |                                                  |
| Freon 113                                            | 20000                  | ND (0.52)              | <del>                                     </del> | ND (0.52)              | -                | ND (0.52)               |                  | ND (0.52)<br>ND (1.7)  | -                                                | ND (0.52)              | -                                                 | ND (0.52)              |                   | ND (0.52)<br>ND (1.7)  | -              | ND (0.52)              | -           | ND (0.52)              | -                                                | ND (0.52)              |                                                  |
| 2-Hexanone<br>Isopropylbenzene                       | 700                    | ND (1.7)<br>ND (0.23)  |                                                  | ND (1.7)<br>ND (0.23)  | -                | ND (1.7)<br>0.94        |                  | ND (1.7)<br>ND (0.23)  | -                                                | ND (1.7)<br>ND (0.23)  | <del>                                     </del>  | ND (1.7)<br>ND (0.23)  |                   | ND (1.7)<br>ND (0.23)  |                | ND (1.7)<br>ND (0.23)  | + -         | ND (1.7)<br>ND (0.23)  |                                                  | ND (1.7)<br>ND (0.23)  | + : +                                            |
| Methyl Acetate                                       | 7000                   | ND (1.9)               | _                                                | ND (1.9)               | -                | ND (1.9)                |                  | ND (1.9)               | -                                                | ND (0.23)              | 1 - 11                                            | ND (1.9)               | _                 | ND (1.9)               | -              | ND (1.9)               | -           | ND (1.9)               | _                                                | ND (1.9)               | <del> </del>                                     |
| Methylcyclohexane                                    | -                      | ND (0.22)              | -                                                |                        | -                | ND (0.22)               |                  | ND (0.22)              | -                                                | ND (0.22)              | - 1                                               | ND (0.22)              | -                 | ND (0.22)              | -              | ND (0.22)              | -           | ND (0.22)              | -                                                | ND (0.22)              |                                                  |
| Methyl Tert Butyl Ether                              | 70                     | ND (0.24)              | -                                                | ND (0.24)              |                  | ND (0.24)               | -                | 1.6                    | -                                                | ND (0.24)              | -                                                 | ND (0.24)              |                   | ND (0.24)              | -              | ND (0.24)              | -           | ND (0.24)              | -                                                | ND (0.24)              | -                                                |
| 4-Methyl-2-pentanone(MIBK)                           | - 3                    | ND (1.0)<br>ND (0.73)  | -                                                | 140 (1.0)              |                  | ND (1.0)<br>ND (0.73)   |                  | ND (1.0)<br>0.88       | -                                                | ND (1.0)<br>ND (0.73)  | <del>                                     </del>  | ND (1.0)<br>ND (0.73)  |                   | ND (1.0)<br>ND (0.73)  | -              | ND (1.0)<br>ND (0.73)  | -           | ND (1.0)               | -                                                | ND (1.0)               | <del>  </del>                                    |
| Methylene chloride<br>Styrene                        | 100                    | ND (0.73)              |                                                  | ND (0.27)              |                  | ND (0.73)<br>ND (0.27)  |                  | ND (0.27)              | -                                                | ND (0.73)              |                                                   | ND (0.73)<br>ND (0.27) |                   | ND (0.73)              |                | ND (0.73)              | -           | ND (0.73)<br>ND (0.27) | _                                                | ND (0.73)<br>ND (0.27) | + +                                              |
| 1,1,2,2-Tetrachloroethane                            | 1                      | ND (0.21)              | -                                                | ND (0.21)              | -                | ND (0.21)               | -                | 0.46                   | -                                                | ND (0.21)              | -                                                 | ND (0.21)              | -                 | ND (0.21)              | -              | ND (0.21)              | -           | ND (0.21)              | -                                                | ND (0.21)              | - 1                                              |
| Tetrachloroethene                                    | 1                      | 2.9                    | -                                                | 110 (0.10)             | -                | ND (0.40)               |                  | ND (0.40)              | -                                                | ND (0.40)              | -                                                 | 1.3                    |                   | 0.51 J                 | -              | 0.47                   | J -         | ND (0.40)              | -                                                | ND (0.40)              | -                                                |
| Toluene<br>1,2,3-Trichlorobenzene                    | 600                    | ND (0.16)<br>ND (0.23) | <del>                                     </del> | ND (0.16)<br>ND (0.23) | -                | ND (0.16)<br>ND (0.23)  |                  | ND (0.16)<br>ND (0.23) | -                                                | ND (0.16)<br>ND (0.23) | 1 1                                               | ND (0.16)<br>ND (0.23) |                   | ND (0.16)<br>ND (0.23) |                | ND (0.16)<br>ND (0.23) | -           | ND (0.16)<br>ND (0.23) | -                                                | ND (0.16)<br>ND (0.23) | +                                                |
| 1,2,4-Trichlorobenzene                               | 9                      | ND (0.23)<br>ND (0.21) | + +                                              | ND (0.23)              | -                | ND (0.23)<br>ND (0.21)  |                  | ND (0.23)<br>ND (0.21) | -                                                | ND (0.23)<br>ND (0.21) | <del>                                     </del>  | ND (0.23)              |                   | ND (0.23)<br>ND (0.21) |                | ND (0.23)              | + - +       | ND (0.21)              |                                                  | ND (0.23)<br>ND (0.21) | <del>+ : +</del>                                 |
| 1,1,1-Trichloroethane                                | 30                     | ND (0.25)              | -                                                | ND (0.25)              | -                | 0.44                    | J -              | ND (0.25)              | -                                                | ND (0.25)              | -                                                 | ND (0.25)              | -                 | ND (0.25)              | -              | ND (0.25)              | -           | ND (0.25)              | -                                                | ND (0.25)              |                                                  |
| 1,1,2-Trichloroethane                                | 3                      | ND (0.21)              | -                                                | 110 (0.22)             |                  | ND (0.21)               |                  | ND (0.21)              | -                                                | ND (0.21)              | -                                                 | ND (0.21)              |                   | ND (0.21)              | -              | ND (0.21)              | -           | ND (0.21)              | -                                                | ND (0.21)              | <del> </del>                                     |
| Trichloroethene Trichlorofluoromethane               | 2000                   | 69.4<br>ND (0.43)      | -                                                | 0.7<br>ND (0.43)       | -                | 31.6<br>ND (0.43)       |                  | 0.8<br>ND (0.43)       | -                                                | 0.47<br>ND (0.43)      | <del>'                                     </del> | 14.2<br>ND (0.43)      |                   | 11.9<br>ND (0.43)      | -              | 12<br>ND (0.43)        | + -         | ND (0.22)              | -                                                | ND (0.22)<br>ND (0.43) | + - +                                            |
| Vinyl chloride                                       | 1                      | ND (0.43)<br>ND (0.15) | -                                                | ND (0.43)              |                  | ND (0.15)               |                  | ND (0.43)              | -                                                | ND (0.43)              | - 1                                               | ND (0.43)              | -                 | ND (0.15)              |                | ND (0.15)              | -           | ND (0.43)              | -                                                | ND (0.43)              | <del>                                     </del> |
| m,p-Xylene                                           | -                      | ND (0.38)              | -                                                | ND (0.38)              | -                | ND (0.38)               | -                | ND (0.38)              | -                                                | ND (0.38)              | -                                                 | ND (0.38)              | -                 | ND (0.38)              | -              | ND (0.38)              | -           | ND (0.38)              | -                                                | ND (0.38)              | -                                                |
| o-Xylene                                             | -                      | ND (0.17)              | -                                                | ND (0.17)              | -                | 0.97                    | J -              | ND (0.17)              | -                                                | ND (0.17)              | -                                                 | ND (0.17)              | -                 | ND (0.17)              | -              | ND (0.17)              | -           | ND (0.17)              | -                                                | ND (0.17)              | <del> </del>                                     |
| Xylene (total)<br>Total VOCs                         | 1000                   | ND (0.17)<br>160.9     | -                                                | ND (0.17)<br>7.04      | -                | 0.97<br>177.83          | -                | ND (0.17)<br>119.79    | -                                                | ND (0.17)<br>25.69     |                                                   | ND (0.17)<br>15.5      | -                 | ND (0.17)<br>29.43     | -              | ND (0.17)<br>29.47     | -           | ND (0.17)<br>1.21      | -                                                | ND (0.17)<br>1.16      | +                                                |
| 700.700                                              | 1                      | 100.5                  | 1                                                | 7.04                   | 1                | 177.03                  | ı                | 113.73                 | 1                                                | 23.03                  | 1 1                                               | 13.3                   | 1                 | 23.73                  |                | 23.77                  | 1           | 1.61                   | ı                                                | 1.10                   |                                                  |
| GC/MS Volatile TIC                                   |                        |                        |                                                  |                        |                  |                         |                  |                        |                                                  |                        |                                                   |                        |                   |                        |                |                        |             |                        |                                                  |                        |                                                  |
| Total TIC, Volatile                                  | -                      | 0                      | -                                                | 0                      | -                | 58                      | J -              | 15 J                   | -                                                | 0                      |                                                   | 0                      |                   | 0                      | - 1            | 0                      | - 1         | 0                      | -                                                | 0                      | $\Box$                                           |
| Total Alkanes                                        | -                      | 0                      | -                                                | 0                      | -                | 0                       | -                | 0                      | -                                                | 0                      |                                                   | 0                      | -                 | 0                      | -              | 0                      | <u> </u>    | 0                      | -                                                | 0                      |                                                  |
| Metals Analysis                                      |                        |                        |                                                  |                        |                  |                         |                  |                        |                                                  |                        |                                                   |                        |                   |                        |                |                        |             |                        |                                                  |                        |                                                  |
| Chromium                                             | 70                     | 1450 b                 | 1570                                             | 148                    | <10              | <10                     | <10              | 744                    | 845                                              | 4760 °                 | 5040 a                                            | 11.1                   | 11.9              | 2290                   | 2380           | 2650                   | 2320        | 114                    | <10                                              | <10                    | <10                                              |
| Iron                                                 | 300                    | -                      | 2160                                             | -                      | 256              | -                       | 11300            | -                      | <100                                             | -                      | 141                                               | -                      |                   | -                      | 105            |                        | <100        | -                      |                                                  | -                      | <100                                             |
| Sodium                                               | 50000                  | 1430000                | -                                                | 17000                  | -                | 70900                   | -                | 1260000                | -                                                | 5210000                | -                                                 | 100000                 | -                 | 964000                 | -              | 1060000                | -           | 97900                  | -                                                | 120000                 |                                                  |
| General Chemistry                                    |                        |                        |                                                  |                        |                  |                         |                  |                        |                                                  |                        |                                                   |                        |                   |                        |                |                        |             |                        |                                                  |                        |                                                  |
| Solids, Total Dissolved                              | 500000                 | 6410000                | 1 - 1                                            | 94000                  | - I              | 325000                  | 1 - 1            | 5230000                | -                                                | 17200000               | - 11                                              | 397000                 |                   | 3380000                |                | 3260000                | 1 - 1       | 576000                 | 1 - 1                                            | 609000                 |                                                  |
| Sulfate                                              | 250000                 | 1440000                |                                                  | 47300                  |                  | 133000                  |                  | 2420000                | -                                                | 4290000                |                                                   | 161000                 |                   | 1140000                |                | 1130000                | -           | 156000                 |                                                  | 165000                 |                                                  |
|                                                      |                        |                        |                                                  |                        |                  |                         |                  |                        |                                                  |                        |                                                   |                        |                   |                        |                |                        |             |                        | <u> </u>                                         |                        |                                                  |

|                                                 | Sample ID      |                                    | 2RND3 FB               | 2RND3 FB                                         | 2RND3 FB               | 2RND3 FB     | 2RND3 TRIP BLANI       | C 2RND3 ISCO-MW-         | 2 2RND3 ISCO-MW-2 | 2RND3 ISCO-MW-         | 3 2RND3 ISCO-MW-3                                | 2RND3 ISCO-MW-         | -4 2RND3 ISCO-MW                                  | /- 2RND3 ISCO-MW-5     | 2RND3 ISCO-MW | /-5 2RND3 ISCO-MW-7    | 2RND3 ISCO-MW                                    | -7 2RND3 ISCO-MW-      | 8 2RND3 ISCO-MW                                  | -8 2RND3 ISCO-MW       | -9 2RND3 ISCO-MW | -9 2RND3 DUP           | 2RND3 DUP                                        |
|-------------------------------------------------|----------------|------------------------------------|------------------------|--------------------------------------------------|------------------------|--------------|------------------------|--------------------------|-------------------|------------------------|--------------------------------------------------|------------------------|---------------------------------------------------|------------------------|---------------|------------------------|--------------------------------------------------|------------------------|--------------------------------------------------|------------------------|------------------|------------------------|--------------------------------------------------|
|                                                 | Sample Date    | NJ CLASS IIA<br>ROUNDWATER QUALITY | JC6498-8               | JC6498-8F                                        | JC6498-14              | JC6498-14F   | JC6498-15              | JC6498-13                | JC6498-13F        | JC6498-6               | JC6498-6F                                        | JC6498-1               | JC6498-1F                                         | JC6498-11              | JC6498-11F    | JC6498-5               | JC6498-5F                                        | JC6498-7               | JC6498-7F                                        | JC6498-4               | JC6498-4F        | JC6498-9               | JC6498-9F                                        |
| :                                               | Sample Type    | CRITERIA (7/22/2010)               | 10/15/2015             | 10/15/2015                                       | 10/16/2015             |              | 10/16/2015             | 10/16/2015               | 10/16/2015        | 10/15/2015             | 10/15/2015                                       | 10/15/2015             | 10/15/2015                                        | 10/16/2015             | 10/16/2015    | 10/15/2015             | 10/15/2015                                       | 10/15/2015             | 10/15/2015                                       | 10/15/2015             | 10/15/2015       | 10/15/2015             | 10/15/2015                                       |
|                                                 | Matrix         | ug/L                               | WATER                  | WATER-FILTERE                                    |                        | NATER-FILTER | EL WATER               | GW                       | GW-FILTERED       | GW                     | GW-FILTERED                                      | GW                     | GW-FILTERED                                       | GW                     | GW-FILTERED   | GW                     | GW-FILTERED                                      | GW                     | GW-FILTERED                                      | GW                     | GW-FILTERED      |                        | GW-FILTERED                                      |
| Volatile Organic Compounds (VC                  | Unit           |                                    | ug/L                   | ug/L                                             | ug/L                   | ug/L         | ug/L                   | ug/L                     | ug/L              | ug/L                   | ug/L                                             | ug/L                   | ug/L                                              | ug/L                   | ug/L          | ug/L                   | ug/L                                             | ug/L                   | ug/L                                             | ug/L                   | ug/L             | ug/L                   | ug/L                                             |
| Acetone                                         | ocs)           | 6000                               | ND (3.3)               | 1 - 1                                            | ND (3.3)               | 1 - 1        | ND (3.3)               | 235                      |                   | 25.4                   | 1 - 1                                            | ND (3.3)               |                                                   | ND (3.3)               |               | 11.8                   |                                                  | 31.3                   | 1                                                | 9.6                    | 11 -             | 10.9                   |                                                  |
| Benzene                                         |                | 1                                  | ND (0.24)              | -                                                | ND (0.24)              | -            | ND (0.24)              | 0.89                     | -                 | ND (0.24)              |                                                  | ND (0.24)              |                                                   | 0.97                   | -             | ND (0.24)              | - 1                                              | ND (0.24)              | -                                                | ND (0.24)              | -                | ND (0.24)              | -                                                |
| Bromochloromethane                              |                | -                                  | ND (0.37)              | -                                                | ND (0.37)              | -            | ND (0.37)              | ND (0.37)                |                   | ND (0.37)              | -                                                | ND (0.37)              | -                                                 | ND (0.37)              | -             | ND (0.37)              | -                                                | ND (0.37)              | -                                                | ND (0.37)              | -                | ND (0.37)              | -                                                |
| Bromodichloromethane<br>Bromoform               |                | 1                                  | ND (0.23)<br>ND (0.23) | -                                                | ND (0.23)<br>ND (0.23) | -            | ND (0.23)<br>ND (0.23) | ND (0.23)<br>ND (0.23)   |                   | ND (0.23)<br>ND (0.23) | -                                                | ND (0.23)<br>ND (0.23) | -                                                 | ND (0.23)<br>ND (0.23) | -             | ND (0.23)<br>ND (0.23) | -                                                | ND (0.23)<br>ND (0.23) | -                                                | ND (0.23)<br>ND (0.23) | -                | ND (0.23)<br>ND (0.23) |                                                  |
| Bromotorm                                       | +              | 4<br>10                            | ND (0.23)<br>ND (0.42) | -                                                | ND (0.23)<br>ND (0.42) | -            | ND (0.23)<br>ND (0.42) | ND (0.23)<br>ND (0.42)   |                   | ND (0.23)<br>ND (0.42) | -                                                | ND (0.23)<br>ND (0.42) | + -                                               | ND (0.23)<br>ND (0.42) | -             | 1.8 J                  | -                                                | ND (0.23)<br>ND (0.42) | -                                                | ND (0.23)<br>ND (0.42) | -                | ND (0.23)<br>ND (0.42) | <del></del>                                      |
| 2-Butanone (MEK)                                |                | 300                                | ND (5.6)               | -                                                | ND (5.6)               | -            | ND (5.6)               | 26.5                     | -                 | ND (5.6)               | -                                                | ND (5.6)               | -                                                 | ND (5.6)               | -             | ND (5.6)               | -                                                | ND (5.6)               | -                                                | ND (5.6)               | -                | ND (5.6)               | -                                                |
| Carbon disulfide                                |                | 700                                | ND (0.25)              | -                                                | ND (0.25)              | -            | ND (0.25)              | 0.73                     |                   | ND (0.25)              | -                                                | ND (0.25)              | -                                                 | ND (0.25)              |               | ND (0.25)              | -                                                | 0.46                   | J -                                              | ND (0.25)              | -                | ND (0.25)              | -                                                |
| Carbon tetrachloride<br>Chlorobenzene           |                | 1<br>50                            | ND (0.22)<br>ND (0.19) | -                                                | ND (0.22)<br>ND (0.19) | -            | ND (0.22)<br>ND (0.19) | ND (0.22)<br>ND (0.19)   |                   | ND (0.22)<br>ND (0.19) |                                                  | ND (0.22)<br>ND (0.19) | + -                                               | ND (0.22)<br>ND (0.19) |               | 1.6<br>ND (0.19)       | -                                                | ND (0.22)<br>ND (0.19) | -                                                | ND (0.22)<br>ND (0.19) | -                | ND (0.22)<br>ND (0.19) | <del>                                     </del> |
| Chloroethane                                    |                | 5                                  | ND (0.34)              | -                                                | ND (0.34)              | -            | ND (0.13)              | ND (0.34)                |                   | ND (0.34)              |                                                  | ND (0.34)              | -                                                 | ND (0.34)              | -             | ND (0.34)              | -                                                | ND (0.13)              |                                                  | ND (0.34)              | -                | ND (0.34)              | -                                                |
| Chloroform                                      |                | 70                                 | ND (0.19)              | -                                                | ND (0.19)              |              | ND (0.19)              | 1.2                      | -                 | 0.29                   |                                                  | 0.56                   | J -                                               | ND (0.19)              |               | 2.4                    | -                                                | 0.26                   |                                                  | ND (0.19)              | -                | ND (0.19)              | -                                                |
| Chloromethane<br>Cyclohexane                    |                | -                                  | ND (0.41)<br>ND (0.28) | -                                                | ND (0.41)<br>ND (0.28) | -            | ND (0.41)              | ND (0.41)<br>ND (0.28)   |                   | ND (0.41)<br>ND (0.28) |                                                  | ND (0.41)<br>ND (0.28) | -                                                 | ND (0.41)<br>0.63 J    |               | 0.68 J                 | -                                                | ND (0.41)<br>ND (0.28) |                                                  | ND (0.41)<br>ND (0.28) |                  | ND (0.41)<br>ND (0.28) |                                                  |
| 1,2-Dibromo-3-chloropropane                     | <b>†</b>       | 0.02                               | ND (0.28)<br>ND (0.99) | -                                                | ND (0.28)<br>ND (0.99) |              | ND (0.28)<br>ND (0.99) | ND (0.28)<br>ND (0.99)   |                   | ND (0.28)<br>ND (0.99) |                                                  | ND (0.28)<br>ND (0.99) | 1 - 1                                             | ND (0.99)              | -             | ND (0.28)<br>ND (0.99) | 1 -                                              | ND (0.28)<br>ND (0.99) | -                                                | ND (0.28)<br>ND (0.99) |                  | ND (0.28)<br>ND (0.99) |                                                  |
| Dibromochloromethane                            |                | 1                                  | ND (0.15)              | -                                                | ND (0.15)              | -            | ND (0.15)              | ND (0.15)                |                   | ND (0.15)              |                                                  | ND (0.15)              | - 1                                               | ND (0.15)              | -             | ND (0.15)              | -                                                | ND (0.15)              | -                                                | ND (0.15)              | -                | ND (0.15)              | -                                                |
| 1,2-Dibromoethane                               |                | 0.03<br>600                        | ND (0.23)<br>ND (0.19) | -                                                | ND (0.23)<br>ND (0.19) | -            | ND (0.23)<br>ND (0.19) | ND (0.23)<br><b>0.52</b> |                   | ND (0.23)<br>ND (0.19) |                                                  | ND (0.23)<br>ND (0.19) | + - +                                             | ND (0.23)<br>ND (0.19) |               | ND (0.23)<br>ND (0.19) | <del>                                     </del> | ND (0.23)<br>ND (0.19) | -                                                | ND (0.23)<br>ND (0.19) |                  | ND (0.23)<br>ND (0.19) | +                                                |
| 1,2-Dichlorobenzene 1,3-Dichlorobenzene         |                | 600                                | ND (0.19)<br>ND (0.23) | <del>                                     </del> | ND (0.19)<br>ND (0.23) |              | ND (0.19)<br>ND (0.23) | ND (0.23)                |                   | ND (0.19)<br>ND (0.23) |                                                  | ND (0.19)<br>ND (0.23) | + +                                               | ND (0.19)<br>ND (0.23) |               | ND (0.19)<br>ND (0.23) | <del>                                     </del> | ND (0.19)<br>ND (0.23) | <del>                                     </del> | ND (0.19)<br>ND (0.23) |                  | ND (0.19)<br>ND (0.23) | <del> +  </del>                                  |
| 1,4-Dichlorobenzene                             |                | 75                                 | ND (0.27)              | -                                                | ND (0.27)              | -            | ND (0.27)              | ND (0.27)                | -                 | ND (0.27)              | -                                                | ND (0.27)              | -                                                 | ND (0.27)              | -             | ND (0.27)              | -                                                | ND (0.27)              | -                                                | ND (0.27)              |                  | ND (0.27)              | -                                                |
| Dichlorodifluoromethane                         |                | 1000                               | ND (0.90)<br>ND (0.17) | -                                                | ND (0.90)              | -            | ND (0.90)<br>ND (0.17) | ND (0.90)                |                   | ND (0.90)              |                                                  | ND (0.90)              | -                                                 | ND (0.90)              | -             | ND (0.90)              | -                                                | ND (0.90)              | -                                                | ND (0.90)              | -                | ND (0.90)<br>ND (0.17) |                                                  |
| 1,1-Dichloroethane 1,2-Dichloroethane           | +              | 50                                 | ND (0.17)<br>ND (0.18) | -                                                | ND (0.17)<br>ND (0.18) | -            | ND (0.17)<br>ND (0.18) | ND (0.17)<br>217         | -                 | ND (0.17)<br>0.26      | <del>                                     </del> | ND (0.17)<br>1.3       | + -                                               | 1.1<br>153             | -             | ND (0.17)<br>6.4       | -                                                | ND (0.17)<br>2.3       | -                                                | ND (0.17)<br>ND (0.18) | -                | ND (0.17)<br>ND (0.18) | <del></del>                                      |
| 1,1-Dichloroethene                              |                | 1                                  | ND (0.51)              | -                                                | ND (0.51)              | -            | ND (0.51)              | ND (0.51)                | -                 | ND (0.51)              | -                                                | ND (0.51)              | -                                                 | ND (0.51)              | -             | ND (0.51)              | -                                                | ND (0.51)              | -                                                | ND (0.51)              | -                | ND (0.51)              | -                                                |
| cis-1,2-Dichloroethene                          |                | 70                                 | ND (0.27)              | -                                                | ND (0.27)              | -            | ND (0.27)              | ND (0.27)                | -                 | 77.9                   | -                                                | ND (0.27)              |                                                   | 6.1                    | -             | ND (0.27)              | -                                                | ND (0.27)              | -                                                | ND (0.27)              | -                | 0.27 J                 | -                                                |
| trans-1,2-Dichloroethene<br>1,2-Dichloropropane |                | 100                                | ND (0.65)<br>ND (0.39) | -                                                | ND (0.65)<br>ND (0.39) | -            | ND (0.65)<br>ND (0.39) | ND (0.65)<br>ND (0.39)   | -                 | 7.3<br>ND (0.39)       | -                                                | ND (0.65)<br>ND (0.39) | -                                                 | ND (0.65)<br>ND (0.39) | -             | ND (0.65)<br>ND (0.39) | -                                                | ND (0.65)<br>ND (0.39) | -                                                | ND (0.65)<br>ND (0.39) | -                | ND (0.65)<br>ND (0.39) |                                                  |
| cis-1,3-Dichloropropene                         |                | -                                  | ND (0.21)              | -                                                | ND (0.21)              | -            | ND (0.33)              | ND (0.21)                | -                 | ND (0.21)              | -                                                | ND (0.21)              |                                                   | ND (0.21)              | -             | ND (0.21)              | -                                                | ND (0.21)              | -                                                | ND (0.21)              | -                | ND (0.21)              | -                                                |
| trans-1,3-Dichloropropene                       |                | -                                  | ND (0.19)              | -                                                | ND (0.19)              | -            | ND (0.19)              | ND (0.19)                | -                 | ND (0.19)              | -                                                | ND (0.19)              | -                                                 | ND (0.19)              | -             | ND (0.19)              | -                                                | ND (0.19)              | -                                                | ND (0.19)              | -                | ND (0.19)              | -                                                |
| 1,4-Dioxane<br>Ethylbenzene                     |                | 0.4<br>700                         | ND (41)<br>ND (0.27)   | -                                                | ND (41)<br>ND (0.27)   | -            | ND (41)<br>ND (0.27)   | ND (41)<br>ND (0.27)     |                   | ND (41)<br>ND (0.27)   | -                                                | ND (41)<br>ND (0.27)   | -                                                 | ND (41)<br>ND (0.27)   | -             | ND (41)<br>ND (0.27)   | -                                                | ND (41)<br>ND (0.27)   | -                                                | ND (41)<br>ND (0.27)   | -                | ND (41)<br>ND (0.27)   | -                                                |
| Freon 113                                       |                | 20000                              | ND (0.52)              | -                                                | ND (0.52)              | -            | ND (0.27)              | ND (0.52)                |                   | ND (0.27)<br>ND (0.52) | -                                                | ND (0.52)              |                                                   | ND (0.27)              | -             | ND (0.52)              | -                                                | ND (0.27)              |                                                  | ND (0.27)<br>ND (0.52) | -                | ND (0.52)              | -                                                |
| 2-Hexanone                                      |                | -                                  | ND (1.7)               | -                                                | ND (1.7)               | -            | ND (1.7)               | ND (1.7)                 | -                 | ND (1.7)               | -                                                | ND (1.7)               | -                                                 | ND (1.7)               | -             | ND (1.7)               | -                                                | ND (1.7)               | -                                                | ND (1.7)               | ÷                | ND (1.7)               | -                                                |
| Isopropylbenzene                                |                | 700<br>7000                        | ND (0.23)              | -                                                | ND (0.23)<br>ND (1.9)  | -            | ND (0.23)              | ND (0.23)                |                   | ND (0.23)              | -                                                | ND (0.23)              | -                                                 | 0.92 J<br>ND (1.9)     | -             | ND (0.23)<br>ND (1.9)  | -                                                | ND (0.23)              | -                                                | ND (0.23)              | -                | ND (0.23)              |                                                  |
| Methyl Acetate Methylcyclohexane                | -              | 7000                               | ND (1.9)<br>ND (0.22)  | -                                                | ND (1.9)<br>ND (0.22)  | + -          | ND (1.9)<br>ND (0.22)  | ND (1.9)<br>ND (0.22)    |                   | ND (1.9)<br>ND (0.22)  | 1 1                                              | ND (1.9)<br>ND (0.22)  | + -                                               | ND (1.9)<br>ND (0.22)  | -             | ND (1.9)<br>ND (0.22)  | -                                                | ND (1.9)<br>ND (0.22)  | -                                                | ND (1.9)<br>ND (0.22)  | -                | ND (1.9)<br>ND (0.22)  | <del></del>                                      |
| Methyl Tert Butyl Ether                         |                | 70                                 | ND (0.24)              | -                                                | ND (0.24)              | -            | ND (0.24)              | ND (0.24)                |                   | ND (0.24)              |                                                  | ND (0.24)              | -                                                 | ND (0.24)              | -             | 0.39 J                 | -                                                | ND (0.24)              |                                                  | ND (0.24)              | -                | ND (0.24)              | -                                                |
| 4-Methyl-2-pentanone(MIBK)                      |                | -                                  | ND (1.0)               | -                                                | ND (1.0)               | -            | ND (1.0)               | ND (1.0)                 | -                 | ND (1.0)               | -                                                | ND (1.0)               | -                                                 | ND (1.0)               |               | ND (1.0)               | -                                                | ND (1.0)               |                                                  | ND (1.0)               | -                | ND (1.0)               | -                                                |
| Methylene chloride<br>Styrene                   |                | 3<br>100                           | ND (0.73)<br>ND (0.27) | -                                                | ND (0.73)<br>ND (0.27) | -            | ND (0.73)<br>ND (0.27) | 1.2<br>ND (0.27)         | J -               | ND (0.73)<br>ND (0.27) | -                                                | 3.7<br>ND (0.27)       | -                                                 | ND (0.73)<br>ND (0.27) | -             | ND (0.73)<br>ND (0.27) | -                                                | ND (0.73)<br>ND (0.27) |                                                  | ND (0.73)<br>ND (0.27) | -                | ND (0.73)<br>ND (0.27) |                                                  |
| 1,1,2,2-Tetrachloroethane                       |                | 1                                  | ND (0.21)              | -                                                | ND (0.21)              | -            | ND (0.21)              | 1.5                      |                   | ND (0.21)              | -                                                | 0.23                   | J -                                               | ND (0.21)              | -             | 1.6                    | -                                                | ND (0.21)              |                                                  | ND (0.21)              |                  | ND (0.21)              | -                                                |
| Tetrachloroethene                               |                | 1                                  | ND (0.40)              | -                                                | ND (0.40)              | -            | ND (0.40)              | 0.92                     | •                 | 2.8                    |                                                  | ND (0.40)              | -                                                 | ND (0.40)              | -             | 1.2                    | -                                                | ND (0.40)              | -                                                | 0.91                   | J -              | 1                      | -                                                |
| Toluene 1.2.3-Trichlorobenzene                  |                | 600                                | ND (0.16)<br>ND (0.23) | -                                                | ND (0.16)<br>ND (0.23) | -            | ND (0.16)<br>ND (0.23) | ND (0.16)<br>0.4         |                   | ND (0.16)<br>ND (0.23) |                                                  | ND (0.16)<br>ND (0.23) | +                                                 | ND (0.16)<br>ND (0.23) | + -           | ND (0.16)<br>ND (0.23) | <del>                                     </del> | ND (0.16)<br>ND (0.23) | -                                                | ND (0.16)<br>ND (0.23) | + -              | ND (0.16)<br>ND (0.23) | +                                                |
| 1,2,4-Trichlorobenzene                          | <del></del>    | 9                                  | ND (0.23)              | -                                                | ND (0.23)              |              | ND (0.23)              | 1.5                      |                   | ND (0.23)              |                                                  | ND (0.23)              | +                                                 | ND (0.23)              | -             | ND (0.23)<br>ND (0.21) | <del>  -</del>                                   | ND (0.23)              | -                                                | ND (0.23)              |                  | ND (0.21)              |                                                  |
| 1,1,1-Trichloroethane                           |                | 30                                 | ND (0.25)              | -                                                | ND (0.25)              | - 1          | ND (0.25)              | ND (0.25)                | -                 | ND (0.25)              | -                                                | ND (0.25)              | -                                                 | 0.62 J                 | -             | ND (0.25)              | -                                                | ND (0.25)              | -                                                | ND (0.25)              | -                | ND (0.25)              | -                                                |
| 1,1,2-Trichloroethane Trichloroethene           |                | 3                                  | ND (0.21)<br>ND (0.22) | -                                                | ND (0.21)<br>ND (0.22) | -            | ND (0.21)<br>ND (0.22) | ND (0.21)<br>2.3         |                   | ND (0.21)<br>76.8      |                                                  | ND (0.21)<br>0.96      | +                                                 | ND (0.21)<br>37.4      | -             | ND (0.21)<br>2.1       |                                                  | ND (0.21)<br>0.9       | -                                                | ND (0.21)<br>11.2      |                  | ND (0.21)<br>10.2      | <del></del>                                      |
| Trichlorofluoromethane                          |                | 2000                               | ND (0.22)<br>ND (0.43) | <del>                                     </del> | ND (0.22)<br>ND (0.43) | + - +        | ND (0.22)<br>ND (0.43) | ND (0.43)                |                   | ND (0.43)              |                                                  | ND (0.43)              | <del>'                                     </del> | ND (0.43)              | + -           | ND (0.43)              | <del>                                     </del> | ND (0.43)              | -                                                | ND (0.43)              |                  | ND (0.43)              | <del> + -</del>                                  |
| Vinyl chloride                                  |                | 1                                  | ND (0.15)              | -                                                | ND (0.15)              | -            | ND (0.15)              | ND (0.15)                |                   | ND (0.15)              |                                                  | ND (0.15)              | -                                                 | ND (0.15)              | -             | ND (0.15)              | -                                                | ND (0.15)              | -                                                | ND (0.15)              | -                | ND (0.15)              | -                                                |
| m,p-Xylene<br>o-Xylene                          |                | -                                  | ND (0.38)<br>ND (0.17) | -                                                | ND (0.38)<br>ND (0.17) | -            | ND (0.38)<br>ND (0.17) | ND (0.38)<br>ND (0.17)   |                   | ND (0.38)<br>ND (0.17) | -                                                | ND (0.38)<br>ND (0.17) | + - +                                             | ND (0.38)              | -             | ND (0.38)<br>ND (0.17) | -                                                | ND (0.38)<br>ND (0.17) | -                                                | ND (0.38)<br>ND (0.17) | -                | ND (0.38)<br>ND (0.17) | -                                                |
| o-Xylene<br>Xylene (total)                      | <del>-  </del> | 1000                               | ND (0.17)<br>ND (0.17) | -                                                | ND (0.17)<br>ND (0.17) |              | ND (0.17)<br>ND (0.17) | ND (0.17)<br>ND (0.17)   |                   | ND (0.17)<br>ND (0.17) | -                                                | ND (0.17)<br>ND (0.17) | + : +                                             | 1.1                    | + -           | ND (0.17)<br>ND (0.17) | <del>                                     </del> | ND (0.17)<br>ND (0.17) | -                                                | ND (0.17)<br>ND (0.17) | + -              | ND (0.17)              | -                                                |
| Total VOCs                                      |                | -                                  | 0                      |                                                  | 0                      |              | 0                      | 489.66                   |                   | 190.75                 |                                                  | 6.75                   |                                                   | 202.14                 |               | 29.97                  |                                                  | 35.22                  |                                                  | 21.71                  |                  | 22.37                  |                                                  |
| CC/MS Valatile TIS                              |                |                                    |                        |                                                  |                        |              |                        |                          |                   |                        |                                                  |                        |                                                   |                        |               |                        |                                                  |                        |                                                  |                        |                  |                        |                                                  |
| GC/MS Volatile TIC Total TIC, Volatile          |                |                                    |                        | 1                                                | 1 0 1                  | 1 - 1        | 0                      | 1 ^ 1                    | 1                 | 1 0 1                  | 1                                                |                        | 1                                                 | 1 202 1.               | <u> </u>      |                        | 1 1                                              |                        | 1                                                | 0                      |                  |                        |                                                  |
| Total Alkanes                                   | <del></del>    | -                                  | 0                      | -                                                | 0                      |              | 0                      | 0                        | -                 | 0                      | -                                                | 0                      | +                                                 | 28.3 J                 | -             | 0                      | <del>  -</del>                                   | 0                      | -                                                | 0                      | -                | 0                      | <del>- H</del>                                   |
|                                                 |                |                                    |                        |                                                  |                        |              |                        |                          |                   |                        |                                                  |                        |                                                   |                        | •             | · · · · ·              |                                                  |                        |                                                  |                        | •                |                        |                                                  |
| Metals Analysis                                 |                |                                    |                        |                                                  |                        |              |                        |                          |                   |                        |                                                  |                        |                                                   |                        |               |                        |                                                  |                        |                                                  |                        |                  |                        |                                                  |
| Chromium                                        |                | 70<br>300                          |                        | <10<br><100                                      |                        | <10<br><100  |                        |                          | 12200 °<br><330 ° | 1260 <sup>a</sup>      | 1300<br><100                                     | 25.1                   | <10                                               | <10                    |               | 136                    |                                                  |                        |                                                  |                        |                  |                        | <b>26.3</b> <100                                 |
| Sodium                                          | <del>  </del>  | 50000                              | <10000                 |                                                  | <10000                 |              |                        | 5560000                  |                   | 1260000                |                                                  | 14200                  |                                                   | 25000                  |               | 526000                 | - 04/                                            | 4260000                |                                                  | 238000                 |                  | 357000                 | -                                                |
|                                                 |                |                                    |                        |                                                  |                        |              |                        |                          | · .               |                        |                                                  |                        |                                                   |                        |               |                        |                                                  |                        |                                                  |                        |                  |                        |                                                  |
| General Chemistry                               |                |                                    |                        |                                                  |                        |              |                        |                          |                   |                        |                                                  |                        |                                                   |                        |               |                        |                                                  |                        |                                                  |                        |                  |                        |                                                  |
| Solids, Total Dissolved<br>Sulfate              |                | 500000<br>250000                   | <10000<br><10000       |                                                  | <10000<br><10000       |              |                        | 24100000<br>10100000     | -                 | 4620000<br>1170000     | -                                                | 123000<br>54600        |                                                   | 220000<br>99800        | -             | 1760000<br>874000      |                                                  | 13200000<br>3520000    |                                                  | 971000<br>470000       | -                | 1000000<br>480000      | <del>                                     </del> |
| Sanate                                          | I              | 230000                             | 10000                  | 1                                                | 10000                  |              | -                      | 1010000                  | 1                 | 1170000                | -                                                | 34000                  | -                                                 | 33000                  | -             | 074000                 | 1                                                | 3320000                | 1                                                | 470000                 | -                | 40000                  |                                                  |

|                                                      | Comple ID                                             | 20ND2 IW1 PT           | 2 2PND2 IM/1 PT               | 2 2PND2 MW 105         | 2PND2 MW 108 | 2PND2 MW 145D          | 2PND2 MW 1450 | 2PND2 MW 1455          | 2PND2 MM 1455 | 2PND4 ER               | 2PND4 ER 2PND4 E         | 3PND4 ER      | 2RND4 TRIP BLAN        | NV 3PND4 ISCO MW       | 1 2PND4 ISCO MM | 1 2PND4 ISCO MW        | 2 2PNID4 ISCO MIN                                | 2 2RND4 ISCO-MW-                | 2 2PND4 ISCO MW 2 | 2PND4 ISCO MW 4        | 2RND4_ISCO-MW-4                                  |
|------------------------------------------------------|-------------------------------------------------------|------------------------|-------------------------------|------------------------|--------------|------------------------|---------------|------------------------|---------------|------------------------|--------------------------|---------------|------------------------|------------------------|-----------------|------------------------|--------------------------------------------------|---------------------------------|-------------------|------------------------|--------------------------------------------------|
|                                                      | Sample ID  NJ CLASS IIA  Sample Date                  | JC6498-12              | -2 ZKND3_IW1-B1<br>JC6498-12F | Z ZKNDS_IVIW-103       | JC6498-10F   | JC6498-3               | JC6498-3F     | JC6498-2               | JC6498-2F     | JC8568-10              | JC8568-10F JC8568-2      | JC8568-20F    | JC8568-21              | JC8568-17              | JC8568-17F      | -1 2KND4_I3CO-WW-      | JC8568-16F                                       | Z ZKND4_13CO-1VIW-:<br>JC8568-8 | JC8568-8F         | JC8568-2               | JC8568-2F                                        |
|                                                      | Sample Type GROUNDWATER QUALITY  CRITERIA (7/22/2010) | 10/16/2015             | 10/16/2015                    | 10/16/2015             | 10/16/2015   | 10/15/2015             | 10/15/2015    | 10/15/2015             | 10/15/2015    | 11/12/2015             | 11/12/2015 11/13/20:     |               | 11/13/2015             | 11/13/2015             | 11/13/2015      | 11/13/2015             | 11/13/2015                                       | 11/12/2015                      | 11/12/2015        | 11/12/2015             | 11/12/2015                                       |
|                                                      | Matrix ug/l                                           | GW                     | GW-FILTERED                   | GW                     | GW-FILTERED  | GW                     | GW-FILTERED   | GW                     | GW-FILTERED   | WATER                  | WATER-FILTERED WATER     | WATER-FILTERE | D WATER                | GW                     | GW-FILTERED     | GW                     | GW-FILTERED                                      | GW                              | GW-FILTERED       | GW                     | GW-FILTERED                                      |
|                                                      | Unit                                                  | ug/L                   | ug/L                          | ug/L                   | ug/L         | ug/L                   | ug/L          | ug/L                   | ug/L          | ug/L                   | ug/L ug/L                | ug/L          | ug/L                   | ug/L                   | ug/L            | ug/L                   | ug/L                                             | ug/L                            | ug/L              | ug/L                   | ug/L                                             |
| Volatile Organic Compound                            |                                                       |                        |                               |                        |              | ND (2.2)               |               |                        | <u> </u>      |                        |                          |               |                        |                        |                 |                        |                                                  |                                 |                   |                        |                                                  |
| Acetone<br>Benzene                                   | 6000                                                  | 11.3<br>ND (0.24)      | -                             | ND (3.3)<br>ND (0.24)  | -            | ND (3.3)<br>ND (0.24)  | -             | ND (3.3)<br>ND (0.24)  | -             | ND (3.3)<br>ND (0.24)  | - ND (3.3)<br>- ND (0.24 | -             | ND (3.3)<br>ND (0.24)  | ND (3.3)<br>ND (0.24)  | -               | 187<br>0.86            | -                                                | 21.9<br>ND (0.24)               | -                 | ND (3.3)<br>ND (0.24)  | -                                                |
| Bromochloromethane                                   | -                                                     | ND (0.24)              | -                             | ND (0.24)              | -            | ND (0.37)              | -             | ND (0.24)              | -             | ND (0.37)              | - ND (0.24               | 1 :           | ND (0.24)              | ND (0.37)              | -               | ND (0.37)              | -                                                | ND (0.24)                       | -                 | ND (0.24)              | <del> </del>                                     |
| Bromodichloromethane                                 | 1                                                     | ND (0.23)              | -                             | ND (0.23)              | -            | ND (0.23)              | -             | ND (0.23)              | -             | ND (0.23)              | - ND (0.23               | -             | ND (0.23)              | ND (0.23)              | -               | ND (0.23)              | -                                                | ND (0.23)                       | -                 | ND (0.23)              | -                                                |
| Bromoform                                            | 4                                                     | ND (0.23)              | -                             | ND (0.23)              | -            | ND (0.23)              | -             | ND (0.23)              | -             | ND (0.23)              | - ND (0.23               | -             | ND (0.23)              | ND (0.23)              | -               | ND (0.23)              |                                                  | ND (0.23)                       | -                 | ND (0.23)              | -                                                |
| Bromomethane<br>2-Butanone (MEK)                     | 10<br>300                                             | ND (0.42)<br>ND (5.6)  | -                             | ND (0.42)<br>ND (5.6)  | -            | ND (0.42)<br>ND (5.6)  | -             | ND (0.42)<br>ND (5.6)  |               | ND (0.42)<br>ND (5.6)  | - ND (0.42<br>- ND (5.6) | + :           | ND (0.42)<br>ND (5.6)  | ND (0.42)<br>ND (5.6)  | -               | 0.8<br>14.8            | J -                                              | ND (0.42)<br>ND (5.6)           | -                 | ND (0.42)<br>ND (5.6)  | -                                                |
| Carbon disulfide                                     | 700                                                   | ND (0.25)              | -                             | ND (0.25)              | -            | ND (0.25)              | -             | ND (0.25)              | -             | ND (0.25)              | - ND (0.25               | -             | ND (0.25)              | ND (0.25)              | -               | 0.81                   | J -                                              | ND (0.25)                       | -                 | 6.8                    | -                                                |
| Carbon tetrachloride                                 | 1                                                     | ND (0.22)              | -                             | ND (0.22)              |              | 0.44 J                 |               | 0.45 J                 | -             | ND (0.22)              | - ND (0.22               | -             | ND (0.22)              | ND (0.22)              |                 | ND (0.22)              | -                                                | ND (0.22)                       | -                 | ND (0.22)              | -                                                |
| Chlorobenzene                                        | 50                                                    | ND (0.19)<br>ND (0.34) | -                             | ND (0.19)<br>ND (0.34) | -            | ND (0.19)<br>ND (0.34) | -             | ND (0.19)<br>ND (0.34) | -             | ND (0.19)<br>ND (0.34) | - ND (0.19<br>- ND (0.34 |               | ND (0.19)<br>ND (0.34) | ND (0.19)<br>ND (0.34) |                 | ND (0.19)<br>ND (0.34) | -                                                | ND (0.19)<br>ND (0.34)          | -                 | ND (0.19)<br>ND (0.34) | -                                                |
| Chloroethane<br>Chloroform                           | 70                                                    | ND (0.34)              |                               | ND (0.34)              | -            | 0.55 J                 | -             | 0.56 J                 | -             | ND (0.34)<br>ND (0.19) | - ND (0.34               |               | ND (0.34)<br>ND (0.19) | ND (0.34)<br>ND (0.19) | -               | 1.3                    | -                                                | 0.27                            | J -               | ND (0.54)              |                                                  |
| Chloromethane                                        | -                                                     | ND (0.41)              | -                             | ND (0.41)              | -            | ND (0.41)              | -             | ND (0.41)              | -             | ND (0.41)              | - ND (0.41               | -             | ND (0.41)              | ND (0.41)              |                 | 1.1                    | -                                                | ND (0.41)                       | -                 | ND (0.41)              | -                                                |
| Cyclohexane                                          | -                                                     | ND (0.28)              |                               | ND (0.28)              |              | ND (0.28)              | -             | ND (0.28)              |               | ND (0.28)              | - ND (0.28               | -             | ND (0.28)              | ND (0.28)              |                 | ND (0.28)              | -                                                | ND (0.28)                       | -                 | ND (0.28)              | -                                                |
| 1,2-Dibromo-3-chloropropar<br>Dibromochloromethane   | ne 0.02                                               | ND (0.99)<br>ND (0.15) |                               | ND (0.99)<br>ND (0.15) |              | ND (0.99)<br>ND (0.15) |               | ND (0.99)<br>ND (0.15) |               | ND (0.99)<br>ND (0.15) | - ND (0.99<br>- ND (0.15 | + -           | ND (0.99)<br>ND (0.15) | ND (0.99)<br>ND (0.15) |                 | ND (0.99)<br>ND (0.15) | +                                                | ND (0.99)<br>ND (0.15)          | 1 -               | ND (0.99)<br>ND (0.15) | + : +                                            |
| 1,2-Dibromoethane                                    | 0.03                                                  | ND (0.23)              | -                             | ND (0.23)              | -            | ND (0.23)              | -             | ND (0.23)              | -             | ND (0.23)              | - ND (0.23               |               | ND (0.23)              | ND (0.23)              |                 | ND (0.23)              |                                                  | ND (0.23)                       | -                 | ND (0.23)              |                                                  |
| 1,2-Dichlorobenzene                                  | 600                                                   | ND (0.19)              | -                             | ND (0.19)              |              | ND (0.19)              |               | ND (0.19)              |               | ND (0.19)              | - ND (0.19               | -             | ND (0.19)              | ND (0.19)              |                 | 0.47                   | 1 -                                              | ND (0.19)                       | -                 | ND (0.19)              |                                                  |
| 1,3-Dichlorobenzene 1,4-Dichlorobenzene              | 600<br>75                                             | ND (0.23)<br>ND (0.27) | -                             | ND (0.23)<br>ND (0.27) |              | ND (0.23)<br>ND (0.27) |               | ND (0.23)<br>ND (0.27) |               | ND (0.23)<br>ND (0.27) | - ND (0.23<br>- ND (0.27 | + -           | ND (0.23)<br>ND (0.27) | ND (0.23)<br>ND (0.27) |                 | ND (0.23)<br>ND (0.27) | +                                                | ND (0.23)<br>ND (0.27)          | +                 | ND (0.23)<br>ND (0.27) | +                                                |
| Dichlorodifluoromethane                              | 1000                                                  | ND (0.27)              |                               | ND (0.27)              |              | ND (0.27)<br>ND (0.90) |               | ND (0.27)<br>ND (0.90) |               | ND (0.27)              | - ND (0.27               |               | ND (0.27)<br>ND (0.90) | ND (0.27)<br>ND (0.90) |                 | ND (0.27)              | 1 -                                              | ND (0.27)<br>ND (0.90)          | 1 : 1             | ND (0.27)<br>ND (0.90) | <del>                                     </del> |
| 1,1-Dichloroethane                                   | 50                                                    | ND (0.17)              | -                             | ND (0.17)              | -            | ND (0.17)              | -             | ND (0.17)              |               | ND (0.17)              |                          | -             | ND (0.17)              | ND (0.17)              | -               | ND (0.17)              | -                                                | ND (0.17)                       | -                 | ND (0.17)              | -                                                |
| 1,2-Dichloroethane                                   | 2                                                     | ND (0.18)<br>ND (0.51) | -                             | 9.1<br>ND (0.51)       | -            | ND (0.18)<br>ND (0.51) | -             | ND (0.18)<br>ND (0.51) | -             | ND (0.18)<br>ND (0.51) | - ND (0.18<br>- ND (0.51 | -             | ND (0.18)<br>ND (0.51) | 3.6<br>ND (0.51)       | -               | 255<br>ND (0.51)       | -                                                | 0.29<br>ND (0.51)               | J -               | 1.3<br>ND (0.51)       | -                                                |
| cis-1.2-Dichloroethene                               | 70                                                    | 4.2                    | -                             | ND (0.31)              | -            | ND (0.31)<br>ND (0.27) | -             | ND (0.31)<br>ND (0.27) | -             | ND (0.31)              | - ND (0.31               | + : +         | ND (0.31)<br>ND (0.27) | ND (0.27)              | -               | ND (0.27)              | -                                                | 75.7                            | -                 | ND (0.51)<br>ND (0.27) | -                                                |
| trans-1,2-Dichloroethene                             | 100                                                   | 0.72                   | J -                           | ND (0.65)              | -            | ND (0.65)              | -             | ND (0.65)              | -             | ND (0.65)              | - ND (0.65               | -             | ND (0.65)              | ND (0.65)              | -               | ND (0.65)              | -                                                | 5.7                             | -                 | ND (0.65)              | -                                                |
| 1,2-Dichloropropane                                  | 1                                                     | ND (0.39)              | -                             | ND (0.39)              | -            | ND (0.39)              | -             | ND (0.39)              | -             | ND (0.39)              | - ND (0.39               | -             | ND (0.39)              | ND (0.39)              | -               | ND (0.39)              | -                                                | ND (0.39)                       | -                 | ND (0.39)              | -                                                |
| cis-1,3-Dichloropropene<br>trans-1,3-Dichloropropene |                                                       | ND (0.21)<br>ND (0.19) | -                             | ND (0.21)<br>ND (0.19) | -            | ND (0.21)<br>ND (0.19) | -             | ND (0.21)<br>ND (0.19) | -             | ND (0.21)<br>ND (0.19) | - ND (0.21<br>- ND (0.19 | -             | ND (0.21)<br>ND (0.19) | ND (0.21)<br>ND (0.19) | -               | ND (0.21)<br>ND (0.19) | -                                                | ND (0.21)<br>ND (0.19)          | -                 | ND (0.21)<br>ND (0.19) | -                                                |
| 1,4-Dioxane                                          | 0.4                                                   | ND (41)                | -                             | ND (41)                | -            | ND (41)                | -             | ND (41)                |               | ND (41)                | - ND (41)                | -             | ND (41)                | ND (41)                | -               | ND (41)                | -                                                | ND (41)                         |                   | ND (41)                |                                                  |
| Ethylbenzene                                         | 700                                                   | ND (0.27)              | -                             | ND (0.27)              |              | ND (0.27)              |               | ND (0.27)              | -             | ND (0.27)              | - ND (0.27               | -             | ND (0.27)              | ND (0.27)              |                 | ND (0.27)              | -                                                | ND (0.27)                       | -                 | ND (0.27)              | -                                                |
| Freon 113                                            | 20000                                                 | ND (0.52)<br>ND (1.7)  | -                             | ND (0.52)<br>ND (1.7)  |              | ND (0.52)<br>ND (1.7)  |               | ND (0.52)<br>ND (1.7)  |               | ND (0.52)<br>ND (1.7)  | - ND (0.52<br>- ND (1.7) | -             | ND (0.52)<br>ND (1.7)  | ND (0.52)<br>ND (1.7)  |                 | ND (0.52)              | -                                                | ND (0.52)<br>ND (1.7)           | -                 | ND (0.52)<br>ND (1.7)  | -                                                |
| 2-Hexanone<br>Isopropylbenzene                       | 700                                                   | ND (1.7)               |                               | ND (1.7)<br>ND (0.23)  |              | ND (1.7)               |               | ND (1.7)               |               | ND (1.7)               | - ND (1.7)               | -             | ND (1.7)               | ND (1.7)               |                 | ND (1.7)               | -                                                | ND (1.7)<br>ND (0.23)           | -                 | ND (1.7)               | -                                                |
| Methyl Acetate                                       | 7000                                                  | ND (1.9)               | -                             | ND (1.9)               | -            | ND (1.9)               |               | ND (1.9)               |               | ND (1.9)               | - ND (1.9)               | -             | ND (1.9)               | ND (1.9)               | -               | ND (1.9)               | -                                                | ND (1.9)                        | -                 | ND (1.9)               | -                                                |
| Methylcyclohexane                                    | -                                                     | ND (0.22)              | -                             | ND (0.22)              |              | ND (0.22)              |               | ND (0.22)              | -             | ND (0.22)              | - ND (0.22               | -             | ND (0.22)              | ND (0.22)              | _               | ND (0.22)              | -                                                | ND (0.22)                       | -                 | ND (0.22)              | -                                                |
| Methyl Tert Butyl Ether<br>4-Methyl-2-pentanone(MIBK | 70                                                    | ND (0.24)<br>ND (1.0)  | -                             | ND (0.24)<br>ND (1.0)  |              | ND (0.24)<br>ND (1.0)  |               | ND (0.24)<br>ND (1.0)  | -             | ND (0.24)<br>ND (1.0)  | - ND (0.24<br>- ND (1.0) | -             | ND (0.24)<br>ND (1.0)  | ND (0.24)<br>ND (1.0)  |                 | ND (0.24)<br>ND (1.0)  | -                                                | ND (0.24)<br>ND (1.0)           | -                 | ND (0.24)<br>ND (1.0)  | -                                                |
| Methylene chloride                                   | 3                                                     | ND (1.0)               | -                             | ND (1.0)<br>ND (0.73)  |              | ND (1.0)<br>ND (0.73)  |               | ND (1.0)<br>ND (0.73)  |               | ND (1.0)               | - ND (1.0)               | -             | ND (1.0)               | ND (1.0)<br>ND (0.73)  |                 | 1.1                    | J -                                              | ND (1.0)<br>ND (0.73)           | -                 |                        |                                                  |
| Styrene                                              | 100                                                   | ND (0.27)              | -                             | ND (0.27)              | -            | ND (0.27)              | -             | ND (0.27)              | -             | ND (0.27)              | - ND (0.27               | -             | ND (0.27)              | ND (0.27)              |                 | ND (0.27)              | -                                                | ND (0.27)                       | -                 | ND (0.27)              |                                                  |
| 1,1,2,2-Tetrachloroethane                            | 1                                                     | ND (0.21)              |                               | ND (0.21)              |              | ND (0.21)              |               | ND (0.21)              |               | ND (0.21)              | - ND (0.21               | -             | ND (0.21)<br>ND (0.40) | ND (0.21)              | -               | 1.5                    | -                                                | ND (0.21)                       | -                 | 110 (0.21)             | -                                                |
| Tetrachloroethene<br>Toluene                         | 600                                                   | 0.49 .<br>ND (0.16)    | J -                           | ND (0.40)<br>ND (0.16) |              | ND (0.40)<br>ND (0.16) |               | ND (0.40)<br>ND (0.16) |               | ND (0.40)<br>ND (0.16) | - ND (0.40<br>- ND (0.16 | -             | ND (0.40)<br>ND (0.16) | ND (0.40)<br>ND (0.16) | -               | ND (0.16)              | -                                                | ND (0.16)                       | -                 | ND (0.40)<br>ND (0.16) | <del></del>                                      |
| 1,2,3-Trichlorobenzene                               | -                                                     | ND (0.23)              |                               | ND (0.23)              | -            | ND (0.23)              | -             | ND (0.23)              | -             | ND (0.23)              | - ND (0.23               |               | ND (0.23)              | ND (0.23)              |                 | ND (0.23)              |                                                  | ND (0.23)                       | <u> </u>          | ND (0.23)              | <u> </u>                                         |
| 1,2,4-Trichlorobenzene                               | 9                                                     | ND (0.21)              | -                             | ND (0.21)              |              | ND (0.21)              |               | ND (0.21)              |               | ND (0.21)              | - ND (0.21               | -             | ND (0.21)              | ND (0.21)              |                 | 0.99                   | 1 -                                              | ND (0.21)                       | -                 | ND (0.21)              |                                                  |
| 1,1,1-Trichloroethane<br>1,1,2-Trichloroethane       | 30                                                    | ND (0.25)<br>ND (0.21) |                               | ND (0.25)<br>ND (0.21) |              | ND (0.25)<br>ND (0.21) |               | ND (0.25)<br>ND (0.21) |               | ND (0.25)<br>ND (0.21) | - ND (0.25<br>- ND (0.21 | 1             | ND (0.25)<br>ND (0.21) | ND (0.25)<br>ND (0.21) |                 | ND (0.25)<br>ND (0.21) | +                                                | ND (0.25)<br>ND (0.21)          | -                 | ND (0.25)<br>ND (0.21) | +                                                |
| Trichloroethene                                      | 1                                                     | 13.7                   | -                             | 1.1                    | <u> </u>     | ND (0.22)              |               | ND (0.22)              |               | ND (0.21)              | - ND (0.22               | -             | ND (0.21)              | 0.41                   |                 | 4                      | -                                                | 80.1                            | - 1               | 0.88 J                 | <u> </u>                                         |
| Trichlorofluoromethane                               | 2000                                                  | ND (0.43)              |                               | ND (0.43)              | -            | ND (0.43)              |               | ND (0.43)              | -             | ND (0.43)              | - ND (0.43               |               | ND (0.43)              | ND (0.43)              |                 | ND (0.43)              | -                                                | ND (0.43)                       | -                 | ND (0.43)              | -                                                |
| Vinyl chloride<br>m.p-Xvlene                         | 1                                                     | ND (0.15)<br>ND (0.38) | -                             | ND (0.15)<br>ND (0.38) | -            | ND (0.15)<br>ND (0.38) | -             | ND (0.15)<br>ND (0.38) |               | ND (0.15)<br>ND (0.38) | - ND (0.15<br>- ND (0.38 | -             | ND (0.15)<br>ND (0.38) | ND (0.15)<br>ND (0.38) | -               | ND (0.15)<br>ND (0.38) | -                                                | ND (0.15)<br>ND (0.38)          |                   | ND (0.15)<br>ND (0.38) | +                                                |
| m,p-Xylene<br>o-Xylene                               | -                                                     | ND (0.38)<br>ND (0.17) | -                             | ND (0.38)<br>ND (0.17) | -            | ND (0.38)<br>ND (0.17) | -             | ND (0.38)<br>ND (0.17) | -             | ND (0.38)<br>ND (0.17) | - ND (0.38               |               | ND (0.38)<br>ND (0.17) | ND (0.38)<br>ND (0.17) | -               | ND (0.38)<br>ND (0.17) | <del>                                     </del> | ND (0.38)<br>ND (0.17)          | -                 | ND (0.38)<br>ND (0.17) | +                                                |
| Xylene (total)                                       | 1000                                                  | ND (0.17)              | -                             | ND (0.17)              | - 1          | ND (0.17)              | -             | ND (0.17)              |               | ND (0.17)              | - ND (0.17               | <u> </u>      | ND (0.17)              | ND (0.17)              | -               | ND (0.17)              | - 1                                              | ND (0.17)                       | -                 | ND (0.17)              | - 1                                              |
| Total VOCs                                           | -                                                     | 30.41                  |                               | 10.2                   |              | 0.99                   |               | 1.01                   |               | 0                      | 0                        |               | 0                      | 4.01                   |                 | 471.33                 |                                                  | 186.86                          |                   | 11.34                  |                                                  |
| GC/MS Volatile TIC                                   |                                                       |                        |                               |                        |              |                        |               |                        |               |                        |                          |               |                        |                        |                 |                        |                                                  |                                 |                   |                        |                                                  |
| Total TIC, Volatile                                  |                                                       | 1 0 1                  | 1 - 1                         | 0 1                    | -            | I 0 I                  | _ 1           | 0                      | . 1           | 0                      | I I _ n                  | 1 - 1         | 0                      |                        | 1 - 1           | 0 1                    | -                                                | 0 1                             | 1 - 1             | I 0 I                  |                                                  |
| Total Alkanes                                        | -                                                     | ő                      | -                             | 0                      |              | 0                      | -             | 0                      | -             | 0                      | - 0                      |               | 0                      | 0                      | -               | 0                      |                                                  | 0                               | -                 | 0                      |                                                  |
|                                                      |                                                       |                        |                               |                        |              |                        |               |                        |               |                        |                          |               |                        |                        |                 |                        |                                                  |                                 |                   |                        |                                                  |
| Metals Analysis                                      | 70                                                    | 11403                  | 1240                          | 1 40                   | 410          | 1 410                  | 40            | 1 410                  | 410           | 1 .40                  | 1 40 11 40               |               |                        | 1                      | 1               | 00503                  | 0400                                             | 1400                            | 1222              | 49.0                   | 410                                              |
| Chromium                                             | 70<br>300                                             | 1140 <sup>a</sup>      | 1210<br><100                  | <10                    | <10<br><100  | <10                    |               | <10                    |               | <10                    | <10 <10 <10 -            | <10<br><100   | 1 -                    | <10                    | <10<br><100     | 9050 <sup>a</sup>      | 9190<br>142                                      |                                 | 1230<br><100      | 48.8                   |                                                  |
| Sodium                                               | 50000                                                 | 519000 a               |                               | 63400                  |              | 61700                  |               | 65900                  |               | <10000                 |                          | -             | <u> </u>               | 16300                  | -               | 5810000                | -                                                | 1140000                         | -                 | 13400                  |                                                  |
| _                                                    |                                                       |                        |                               |                        |              |                        |               |                        |               |                        |                          |               |                        |                        |                 |                        |                                                  |                                 |                   |                        |                                                  |
| General Chemistry                                    |                                                       | 4746                   | , .                           | 405                    |              | 404655                 |               | 1 424000               |               | 1 44655                | 1 1                      |               | _                      |                        | ,               | 460                    |                                                  | 272                             | ,                 | 420000                 |                                                  |
| Solids, Total Dissolved<br>Sulfate                   | 500000<br>250000                                      | 1740000<br>610000      |                               | 405000<br>175000       |              | 404000<br>132000       | -             | 431000<br>137000       |               | 11000<br><10000        |                          |               | + -                    | 242000<br>129000       | -               | 16900000<br>8560000    | +                                                | 3720000<br>1080000              | -                 | 120000<br>56300        | +                                                |
|                                                      | 250000                                                | 010000                 | 1                             | 1,5000                 |              | 101000                 |               | 10,000                 |               | -10000                 | (20000                   |               | 1                      | 12,000                 | ı               | 030000                 |                                                  | 100000                          |                   | 50500                  |                                                  |

|                                                    | Sample ID                           |    | 2RND4 ISCO-MW-5        | 2RND4 ISCO-MW | -5 2RND4 ISCO-MW-6     | 6 2RND4 ISCO-MW-I | 2RND4 ISCO-MW-7        | 2RND4 ISCO-MW-7                                  | 2RND4 ISCO-MW-         | 8 2RND4 ISCO-MW-8 | 2RND4 ISCO-MW-9        | 2RND4 ISCO-MW-9 | 2RND4 IW1-BT-2         | 2RND4 IW1-BT-2                                   | 2RND4 IW1-DR-1         | 2RND4 IW1-DR-1                                   | 2RND4 MW-10S           | 2RND4 MW-10S | 2RND4 DUP              | 2RND4 DUP 2RND4 | MW-11I 2RND4         | 4 MW-11I |
|----------------------------------------------------|-------------------------------------|----|------------------------|---------------|------------------------|-------------------|------------------------|--------------------------------------------------|------------------------|-------------------|------------------------|-----------------|------------------------|--------------------------------------------------|------------------------|--------------------------------------------------|------------------------|--------------|------------------------|-----------------|----------------------|----------|
| 9                                                  | Sample Date NJ CLAS                 |    | JC8568-18              | JC8568-18F    | JC8568-19              | JC8568-19F        | JC8568-13              | JC8568-13F                                       | JC8568-12              | JC8568-12F        | JC8568-7               | JC8568-7F       | JC8568-3               | JC8568-3F                                        | JC8568-1               | JC8568-1F                                        | JC8568-6               | JC8568-6F    | JC8568-9               | JC8568-9F JC8   | 668-11 JC85          | 568-11F  |
|                                                    | Sample Type GROUNDWATE CRITERIA (7/ |    | 11/13/2015             | 11/13/2015    | 11/13/2015             | 11/13/2015        | 11/13/2015             | 11/13/2015                                       | 11/13/2015             | 11/13/2015        | 11/12/2015             | 11/12/2015      | 11/12/2015             | 11/12/2015                                       | 11/12/2015             | 11/12/2015                                       | 11/12/2015             | 11/12/2015   | 11/12/2015             | 11/12/2015 11/1 | 3/2015 11/1          | 13/2015  |
|                                                    | Matriy                              |    | GW                     | GW-FILTERED   | GW                     | GW-FILTERED       | GW                     | GW-FILTERED                                      | GW                     | GW-FILTERED       | GW                     | GW-FILTERED     | GW                     | GW-FILTERED                                      | GW                     | GW-FILTERED                                      | GW                     | GW-FILTERED  | GW                     | GW-FILTERED     | SW GW-F              | FILTERED |
|                                                    | Unit ug/l                           |    | ug/L                   | ug/L          | ug/L                   | ug/L              | ug/L                   | ug/L                                             | ug/L                   | ug/L              | ug/L                   | ug/L            | ug/L                   | ug/L                                             | ug/L                   | ug/L                                             | ug/L                   | ug/L         |                        |                 | g/L ı                | ug/L     |
| Volatile Organic Compounds (VC                     |                                     |    |                        |               |                        |                   |                        |                                                  |                        |                   |                        |                 |                        |                                                  |                        |                                                  |                        |              |                        |                 |                      |          |
| Acetone                                            | 6000                                | )  | ND (3.3)               |               | ND (3.3)               | -                 | 5.3 J                  | -                                                | 37.0                   | -                 | 7.3 J                  | -               | 7.1 J                  |                                                  | ND (3.3)               |                                                  | ND (3.3)               |              | ND (3.3)               |                 |                      |          |
| Benzene                                            | 1                                   |    | 1.2<br>ND (0.37)       | -             | ND (0.24)              | -                 | ND (0.24)              | -                                                | ND (0.24)              | -                 | ND (0.24)              | -               | ND (0.24)              | -                                                | ND (0.24)              | -                                                | ND (0.24)              |              | ND (0.24)<br>ND (0.37) | - ND (0         |                      |          |
| Bromochloromethane<br>Bromodichloromethane         | 1                                   |    | ND (0.37)<br>ND (0.23) | -             | ND (0.37)<br>ND (0.23) | -                 | ND (0.37)<br>ND (0.23) | -                                                | ND (0.37)<br>ND (0.23) | -                 | ND (0.37)<br>ND (0.23) | -               | ND (0.37)<br>ND (0.23) | -                                                | ND (0.37)<br>ND (0.23) | -                                                | ND (0.37)<br>ND (0.23) |              | ND (0.37)<br>ND (0.23) | - ND (0         | .37) -               |          |
| Bromoform                                          | 4                                   |    | ND (0.23)              | -             | ND (0.23)              | -                 | ND (0.23)              | -                                                | ND (0.23)              | -                 |                        | -               | ND (0.23)              | -                                                | ND (0.23)              | -                                                |                        | -            | ND (0.23)              | - ND (0         | .23)                 | -        |
| Bromomethane                                       | 10                                  |    | ND (0.42)              |               | ND (0.42)              | -                 | ND (0.42)              |                                                  | ND (0.42)              |                   | ND (0.42)              | -               | ND (0.42)              |                                                  | ND (0.42)              |                                                  | ND (0.42)              | -            | ND (0.42)              | - ND (0         | .42) -               | -        |
| 2-Butanone (MEK)                                   | 300                                 |    | ND (5.6)               |               | ND (5.6)               | -                 | ND (5.6)               | -                                                | ND (5.6)               | -                 | ND (5.0)               | -               | ND (5.6)               | -                                                | ND (5.6)               | -                                                | 140 (5.0)              |              | ND (5.6)               | - ND (          |                      |          |
| Carbon disulfide Carbon tetrachloride              | 700                                 |    | ND (0.25)<br>ND (0.22) |               | 0.28<br>ND (0.22)      | J -               | 0.35 J<br>0.93 J       | -                                                | 0.35 .<br>ND (0.22)    | J -               | ND (0.25)<br>ND (0.22) | -               | ND (0.25)<br>ND (0.22) | -                                                | 0.64 .<br>ND (0.22)    |                                                  | ND (0.23)              |              | ND (0.25)<br>ND (0.22) | - ND (0         |                      |          |
| Chlorobenzene                                      | 50                                  |    | ND (0.22)<br>ND (0.19) |               | ND (0.22)              | -                 | ND (0.19)              | -                                                | ND (0.22)              | -                 | ND (0.22)<br>ND (0.19) | -               | ND (0.22)<br>ND (0.19) | -                                                | ND (0.22)<br>ND (0.19) | -                                                | ND (0.22)<br>ND (0.19) |              | ND (0.22)              | - ND (          |                      |          |
| Chloroethane                                       | 5                                   |    | ND (0.34)              | -             | ND (0.34)              | -                 | ND (0.34)              | -                                                | ND (0.34)              | -                 | ND (0.34)              | -               | ND (0.34)              | -                                                | ND (0.34)              | -                                                | ND (0.34)              |              | ND (0.34)              | - ND (0         |                      | -        |
| Chloroform                                         | 70                                  |    | ND (0.19)              |               | ND (0.19)              | -                 | 1.6                    |                                                  | ND (0.19)              | -                 | 140 (0.13)             | -               | ND (0.19)              | -                                                | ND (0.19)              | -                                                | ND (0.19)              |              | ND (0.19)              |                 |                      |          |
| Chloromethane                                      | -                                   |    | ND (0.41)              |               | ND (0.41)              | -                 | 0.54 J                 |                                                  | 0.62                   |                   | ND (0.41)              |                 | ND (0.41)              |                                                  | ND (0.41)              |                                                  | ND (0.41)              |              | ND (0.41)              |                 |                      |          |
| Cyclohexane<br>1,2-Dibromo-3-chloropropane         | 0.02                                |    | 1 J<br>ND (0.99)       |               | ND (0.28)<br>ND (0.99) | -                 | ND (0.28)<br>ND (0.99) | -                                                | ND (0.28)<br>ND (0.99) |                   | ND (0.28)<br>ND (0.99) |                 | ND (0.28)<br>ND (0.99) |                                                  | ND (0.28)<br>ND (0.99) |                                                  | ND (0.28)<br>ND (0.99) |              | ND (0.28)<br>ND (0.99) |                 |                      |          |
| Dibromochloromethane                               | 1                                   |    | ND (0.35)              |               | ND (0.15)              | -                 | ND (0.15)              | -                                                | ND (0.35)              | -                 |                        |                 | ND (0.15)              | -                                                | ND (0.15)              | -                                                |                        |              | ND (0.35)              |                 |                      | -        |
| 1,2-Dibromoethane                                  | 0.03                                |    | ND (0.23)              | -             | ND (0.23)              | -                 | ND (0.23)              | -                                                | ND (0.23)              | -                 | ND (0.23)              | -               | ND (0.23)              | -                                                | ND (0.23)              | -                                                | ND (0.23)              | -            | ND (0.23)              | - ND (0         | .23) -               |          |
| 1,2-Dichlorobenzene                                | 600                                 |    | ND (0.19)              | -             | ND (0.19)              | -                 | ND (0.19)              | - 1                                              | ND (0.19)              | -                 | ND (0.19)              |                 | ND (0.19)              | -                                                | ND (0.19)              | -                                                | ND (0.19)              |              | ND (0.19)              | - ND (0         |                      | $-\Box$  |
| 1,3-Dichlorobenzene                                | 600                                 |    | ND (0.23)<br>ND (0.27) | -             | ND (0.23)<br>ND (0.27) | -                 | ND (0.23)              | <del></del>                                      | ND (0.23)<br>ND (0.27) |                   | ND (0.23)              | -               | ND (0.23)              | <del>                                     </del> | ND (0.23)<br>ND (0.27) | +                                                | ND (0.23)<br>ND (0.27) |              | ND (0.23)<br>ND (0.27) | - ND (0         |                      |          |
| 1,4-Dichlorobenzene Dichlorodifluoromethane        | 75<br>1000                          |    | ND (0.27)<br>ND (0.90) |               | ND (0.27)<br>ND (0.90) | -                 | ND (0.27)<br>ND (0.90) | <del>                                     </del> | ND (0.27)<br>ND (0.90) | -                 | ND (0.27)<br>ND (0.90) | -               | ND (0.27)<br>ND (0.90) | <del>                                     </del> | ND (0.27)<br>ND (0.90) | <del>                                     </del> | ND (0.27)<br>ND (0.90) |              | ND (0.27)<br>ND (0.90) | - ND (0         |                      |          |
| 1,1-Dichloroethane                                 | 50                                  |    | 1.3                    |               | ND (0.17)              |                   | ND (0.17)              |                                                  | ND (0.17)              | -                 | ND (0.17)              | -               | ND (0.17)              | 1 - 1                                            | ND (0.17)              |                                                  | ND (0.17)              | 1 - 1        | ND (0.17)              | - ND (0         |                      |          |
| 1,2-Dichloroethane                                 | 2                                   |    | 167                    | -             | 1.6                    | -                 | 4                      | -                                                | 5.7                    | -                 | ND (0.18)              | -               | ND (0.18)              | -                                                | ND (0.18)              | -                                                | 14.4                   | -            | 14.1                   | - ND (0         |                      | $-\Box$  |
| 1,1-Dichloroethene                                 | 1 70                                |    | ND (0.51)              | -             | ND (0.51)<br>0.92      |                   | ND (0.51)              | -                                                | ND (0.51)              | -                 | ND (0.51)<br>0.33 J    | -               | ND (0.51)              | -                                                | ND (0.51)              | -                                                | ND (0.51)              | -            | ND (0.51)<br>0.76 J    | - ND (0         |                      |          |
| cis-1,2-Dichloroethene<br>trans-1.2-Dichloroethene | 70<br>100                           |    | 9.1<br>ND (0.65)       | -             | ND (0.65)              | J -               | ND (0.27)<br>ND (0.65) | -                                                | ND (0.27)<br>ND (0.65) | -                 | ND (0.65)              | -               | 2.9<br>ND (0.65)       | -                                                | ND (0.27)<br>ND (0.65) | -                                                | 0.8 J<br>ND (0.65)     | -            | ND (0.65)              | - ND (0         |                      |          |
| 1,2-Dichloropropane                                | 1                                   |    | ND (0.39)              | -             | ND (0.39)              | -                 | ND (0.39)              | -                                                | ND (0.39)              | -                 | ND (0.39)              | -               | ND (0.39)              | -                                                | ND (0.39)              | -                                                | ND (0.39)              | -            | ND (0.39)              | - ND (0         |                      |          |
| cis-1,3-Dichloropropene                            | -                                   |    | ND (0.21)              | -             | ND (0.21)              | -                 | ND (0.21)              | -                                                | ND (0.21)              | -                 | ND (0.21)              | -               | ND (0.21)              | -                                                | ND (0.21)              | -                                                | ND (0.21)              | -            | ND (0.21)              | - ND (0         |                      |          |
| trans-1,3-Dichloropropene                          | -                                   |    | ND (0.19)              | -             | ND (0.19)              | -                 | ND (0.19)              | -                                                | ND (0.19)              | -                 | ND (0.19)              | -               | ND (0.19)              | -                                                | ND (0.19)              | -                                                | ND (0.19)              |              | ND (0.19)              | - ND (0         |                      |          |
| 1,4-Dioxane<br>Ethylbenzene                        | 0.4<br>700                          |    | ND (41)<br>ND (0.27)   | -             | ND (41)<br>ND (0.27)   | -                 | ND (41)<br>ND (0.27)   | -                                                | ND (41)<br>ND (0.27)   | -                 | ND (41)<br>ND (0.27)   | -               | ND (41)<br>ND (0.27)   | -                                                | ND (41)<br>ND (0.27)   | -                                                | ND (41)<br>ND (0.27)   |              | ND (41)<br>ND (0.27)   | - IND           |                      | -+       |
| Freon 113                                          | 2000                                |    | ND (0.52)              | -             | ND (0.52)              | -                 | ND (0.52)              | -                                                | ND (0.52)              | -                 | ND (0.52)              | -               | ND (0.52)              | -                                                | ND (0.52)              | -                                                |                        | -            | ND (0.52)              | - ND (0         |                      |          |
| 2-Hexanone                                         | -                                   |    | ND (1.7)               | -             | ND (1.7)               | -                 | ND (1.7)               | -                                                | ND (1.7)               | -                 | ND (1.7)               | -               | ND (1.7)               | -                                                | ND (1.7)               | -                                                | ND (1.7)               | -            | ND (1.7)               | - ND (          | 1.7) -               |          |
| Isopropylbenzene                                   | 700                                 |    | 1.2                    | -             | ND (0.23)              | -                 | ND (0.23)              | -                                                | ND (0.23)              | -                 | ND (0.23)              | -               | ND (0.23)              | -                                                | ND (0.23)              | -                                                | 140 (0.23)             |              | ND (0.23)              | - ND (0         |                      |          |
| Methyl Acetate                                     | 7000                                | 1  | ND (1.9)               | -             | ND (1.9)               | -                 | ND (1.9)               | -                                                | ND (1.9)               | -                 | ND (1.9)               | -               | ND (1.9)               | -                                                | ND (1.9)               | -                                                | ND (1.9)               |              | ND (1.9)               | - ND (          |                      |          |
| Methylcyclohexane<br>Methyl Tert Butyl Ether       | 70                                  |    | ND (0.22)<br>ND (0.24) | -             | ND (0.22)<br>ND (0.24) | -                 | ND (0.22)<br>0.48 J    | -                                                | ND (0.22)<br>0.42      |                   | ND (0.22)<br>ND (0.24) | -               | ND (0.22)<br>ND (0.24) | -                                                | ND (0.22)<br>ND (0.24) | -                                                | ND (0.22)<br>ND (0.24) |              | ND (0.22)<br>ND (0.24) |                 |                      |          |
| 4-Methyl-2-pentanone(MIBK)                         | -                                   |    | ND (1.0)               | -             | ND (1.0)               | -                 | ND (1.0)               | -                                                | ND (1.0)               | -                 |                        | -               | ND (1.0)               | -                                                | ND (1.0)               | -                                                |                        | -            | ND (1.0)               | - ND (          |                      | -        |
| Methylene chloride                                 | 3                                   |    | ND (0.73)              |               | 1.3                    | J -               | ND (0.73)              | -                                                | ND (0.73)              |                   | ND (0.73)              | -               | ND (0.73)              | -                                                | ND (0.73)              | -                                                | 0.92 J                 | -            | 0.9 J                  | - ND (0         | .73)                 | -        |
| Styrene                                            | 100                                 |    | ND (0.27)              |               | ND (0.27)              | -                 | ND (0.27)              |                                                  | ND (0.27)<br>ND (0.21) | -                 | 145 (0.27)             | -               | ND (0.27)              | -                                                | 140 (0.27)             |                                                  | ND (0.27)              | -            | ND (0.27)<br>ND (0.21) | - ND (0         |                      |          |
| 1,1,2,2-Tetrachloroethane Tetrachloroethene        | 1                                   |    | ND (0.21)<br>ND (0.40) |               | ND (0.21)<br>ND (0.40) | -                 | 0.4 J<br>0.84 J        |                                                  | ND (0.21)<br>ND (0.40) | -                 | ND (0.21)<br>0.88 J    | -               | ND (0.21)<br>0.42 J    | -                                                | 110 (0.21)             |                                                  | ND (0.21)<br>ND (0.40) |              | ND (0.21)<br>ND (0.40) | - ND (0         |                      |          |
| Toluene                                            | 600                                 |    | ND (0.16)              | -             | ND (0.16)              | -                 | ND (0.16)              |                                                  | ND (0.16)              | -                 | ND (0.16)              | -               | ND (0.16)              | -                                                |                        | -                                                |                        |              | ND (0.16)              | - ND (0         |                      | _        |
| 1,2,3-Trichlorobenzene                             | -                                   |    | ND (0.23)              | -             | ND (0.23)              | -                 | ND (0.23)              |                                                  | ND (0.23)              | -                 | ND (0.23)              | -               | ND (0.23)              | -                                                | ND (0.23)              | -                                                | 110 (0.25)             | -            | ND (0.23)              | - ND (0         | .23)                 |          |
| 1,2,4-Trichlorobenzene                             | 9                                   |    | ND (0.21)              | -             | ND (0.21)              | -                 | ND (0.21)              |                                                  | ND (0.21)              | -                 | ND (0.21)              | -               | ND (0.21)              | -                                                | ND (0.21)              | -                                                | 140 (0.22)             |              | ND (0.21)              | - ND (0         |                      | $ \mp$   |
| 1,1,1-Trichloroethane<br>1,1,2-Trichloroethane     | 30                                  |    | 0.9 J<br>ND (0.21)     |               | ND (0.25)<br>ND (0.21) | -                 | ND (0.25)<br>ND (0.21) |                                                  | ND (0.25)<br>ND (0.21) | -                 | ND (0.25)<br>ND (0.21) | -               | ND (0.25)<br>ND (0.21) | + -                                              | ND (0.25)<br>ND (0.21) |                                                  | ND (0.25)<br>ND (0.21) |              | ND (0.25)<br>ND (0.21) | - ND (0         |                      | -+       |
| Trichloroethene                                    | 1                                   |    | 52.6                   |               | 1.9                    | -                 | 1.6                    | -                                                | 0.27                   | , ·               | 12.6                   | -               | 10.4                   | + - +                                            | 1.4                    | <del>                                     </del> | 1.9                    |              | 1.9                    | - ND (0         |                      |          |
| Trichlorofluoromethane                             | 2000                                | 1  | ND (0.43)              |               | ND (0.43)              | -                 | ND (0.43)              | -                                                | ND (0.43)              | -                 | ND (0.43)              |                 | ND (0.43)              | -                                                | ND (0.43)              | -                                                | ND (0.43)              |              | ND (0.43)              | - ND (0         | .43)                 | -        |
| Vinyl chloride                                     | 1                                   |    | ND (0.15)              | -             | ND (0.15)              | -                 | ND (0.15)              | -                                                | ND (0.15)              | -                 | 110 (0.15)             | -               | ND (0.15)              | - 1                                              | ND (0.15)              | -                                                | ND (0.15)              |              | ND (0.15)              | - ND (0         |                      |          |
| m,p-Xylene<br>o-Xylene                             | -                                   |    | 0.4 J<br>0.89 J        | -             | ND (0.38)<br>ND (0.17) | -                 | ND (0.38)<br>ND (0.17) | -                                                | ND (0.38)<br>ND (0.17) | -                 | (0.00)                 | -               | ND (0.38)<br>ND (0.17) | -                                                | ND (0.38)<br>ND (0.17) | -                                                | ND (0.38)<br>ND (0.17) |              | ND (0.38)<br>ND (0.17) | - ND (0         |                      | -+       |
| o-Xylene<br>Xylene (total)                         | 1000                                | ,  | 0.89 J                 | -             | ND (0.17)<br>ND (0.17) | -                 | ND (0.17)<br>ND (0.17) | -                                                | ND (0.17)<br>ND (0.17) |                   | ND (0.17)<br>ND (0.17) | -               | ND (0.17)<br>ND (0.17) | 1 -                                              | ND (0.17)<br>ND (0.17) | -                                                | ND (0.17)<br>ND (0.17) |              | ND (0.17)<br>ND (0.17) |                 |                      |          |
| Total VOCs                                         | -                                   |    | 235.6                  |               | 6                      |                   | 16.04                  |                                                  | 44.96                  |                   | 21.11                  |                 | 20.82                  |                                                  | 2.45                   |                                                  |                        |              | 17.66                  |                 |                      |          |
|                                                    |                                     |    |                        |               |                        |                   |                        |                                                  |                        |                   |                        |                 |                        |                                                  |                        |                                                  |                        |              |                        |                 |                      |          |
| GC/MS Volatile TIC                                 |                                     |    |                        |               |                        |                   |                        |                                                  |                        |                   |                        |                 |                        |                                                  |                        |                                                  |                        |              |                        |                 |                      |          |
| Total TIC, Volatile                                | -                                   |    | 57.7 J                 | -             | 0                      | -                 | 0                      |                                                  | 0                      | -                 | 0                      | -               | 0                      | - +                                              | 0                      | -                                                | 0                      | -            | 0                      | - 0             | <del>-     - '</del> | -+       |
| Total Alkanes                                      | 1 -                                 |    | U                      | - 1           | U                      | -                 | U                      |                                                  | U                      | -                 | U                      | -               | U                      | <u> </u>                                         | U                      | -                                                | U                      | i - I        | U                      | (               | 11 -                 | -        |
| Metals Analysis                                    |                                     |    |                        |               |                        |                   |                        |                                                  |                        |                   |                        |                 |                        |                                                  |                        |                                                  |                        |              |                        |                 |                      |          |
| Chromium                                           | 70                                  |    | <10                    |               | 29.5                   |                   | 127                    | 03.5                                             | 5940                   | 6270              | 131                    | 189             | 909                    | 590                                              |                        | <10                                              | 39.2                   | <10          |                        | <10 <1          |                      | 10       |
| Iron                                               | 300                                 |    | -                      | 13000         |                        | <100              | -                      | 2830                                             |                        | 115               | -                      | 5060            | -                      | <100                                             |                        | 47300                                            | -                      |              |                        | <100 -          | <1                   | .00      |
| Sodium                                             | 5000                                | 0  | 20300                  | -             | 128000                 | -                 | 333000                 | -                                                | 4520000                | -                 | 168000                 | -               | 432000                 | - 1                                              | 23400                  | -                                                | 104000                 | -            | 102000                 | - 164           | 00                   |          |
| General Chemistry                                  |                                     |    |                        |               |                        |                   |                        |                                                  |                        |                   |                        |                 |                        |                                                  |                        |                                                  |                        |              |                        |                 |                      |          |
| Solids, Total Dissolved                            | 50000                               | 10 | 180000                 | 1 - 1         | 66700                  | 1 -               | 1010000                | 1 - 1                                            | 13300000               | 1 - 1             | 1070000                | -               | 1280000                | 1 - 1                                            | 317000                 | 1 - 1                                            | 474000                 | 1 - 1        | 454000                 | -   740         | 00                   |          |
| Sulfate                                            | 25000                               | 10 | 88400                  |               |                        | -                 | 528000                 | _                                                | 4060000                |                   | 330000                 | <u>-</u>        | 426000                 | <u> </u>                                         | 71000                  | <u> </u>                                         | 216000                 |              | 219000                 |                 |                      |          |
|                                                    |                                     |    |                        |               |                        | _                 |                        |                                                  |                        |                   |                        | _               |                        |                                                  |                        |                                                  | _                      |              |                        |                 |                      |          |

| Supple Park      | RND4_MW-14SS 2RND4_MW-14SS 2RND4_MW-5I 2RND4_MW-5I 2RND4_PZ-1S | 2RND4_MW-14SS | 2RND4_MW-14SD | ZRND4 MW-14SD |                    | Sample ID             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------|---------------|---------------|--------------------|-----------------------|
| Maritim Organic Compounds (1905a)   Maritim Organic Compounds (1905b)   Maritim Organic Compounds (1   |                                                                |               |               |               | NJ CLASS IIA       |                       |
| Variet Gyrans Compounds (10/Cs)  Sections (September 10/Cs)  Sections (September 10/Cs | 11/12/2015 11/12/2015 11/13/2015 11/13/2015 11/13/2015         | 11/12/2015    | 11/12/2015    | 11/12/2015    |                    | Sample Type           |
| Montable    | GW GW-FILTERED GW GW-FILTERED GW                               | GW            | GW-FILTERED   | GW            |                    | Matrix                |
| Excision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ug/L ug/L ug/L ug/L ug/L                                       | ug/L          | ug/L          | ug/L          | u <sub>6</sub> / L |                       |
| Description   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |               |               |               |                    |                       |
| Demonstratements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |               | -             |               |                    |                       |
| Second form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |               | - +           |               | 1                  |                       |
| Supporture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |               |               |               | 1                  |                       |
| Deliconomic (MES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |               | -             |               |                    |                       |
| Carbon Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |               | -             |               |                    |                       |
| Carbon testachorde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |               | -             |               |                    |                       |
| Chordenessee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |               |               |               |                    |                       |
| Chlosophane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |               | -             |               |                    |                       |
| Chlorentates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |               | -             |               |                    |                       |
| Comment   Comm   |                                                                |               | -             |               | 70                 |                       |
| 1.00cm/ordentame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |               | -             |               | -                  |                       |
| Deteronchromenhane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |               |               |               | 0.02               |                       |
| 12-Determentementementer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |               |               |               |                    |                       |
| 1.5 Descriptorpheneme   600   NO (0.23)   . NO (0.27)      | ND (0.23) - ND (0.23) - ND (0.23)                              | ND (0.23)     | -             | ND (0.23)     |                    | 1,2-Dibromoethane     |
| 1.6 Dischordementable   75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |               | -             |               |                    |                       |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |               |               |               |                    |                       |
| 1.1-Dichloroschane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |               |               |               |                    |                       |
| 1.4 Dicharcethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |               |               |               |                    |                       |
| Col. 2. Dichloroethene   70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |               | -             |               |                    |                       |
| Insp. 12-Dichloropethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |               | -             |               |                    |                       |
| 12-Dethorpropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |               |               |               |                    |                       |
| Col.   3.0 inhoropropene   .   ND (0.21)   .   ND (0.27)   .   ND (0.23)   .   ND (0.24)   .   ND (0.25)   .   |                                                                |               |               |               |                    |                       |
| 1.4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |               | -             |               | -                  |                       |
| Ethylenerne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |               | -             |               | -                  |                       |
| Free   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |               | -             |               |                    | ,                     |
| 2-Hexanne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |               | - +           |               |                    |                       |
| Isopropylenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |               |               |               | -                  |                       |
| Methyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |               | -             |               | 700                |                       |
| Methyl (Erb Buryl (Ether   70   ND (0.24)   -   ND (0.25)   -   ND (0.27)   -   ND (0.28)      | ND (1.9) - ND (1.9) - ND (1.9)                                 | ND (1.9)      | -             | ND (1.9)      | 7000               |                       |
| 4-Methyl-2-pentanone(Mil8K)   - NO (1.0)   - ND (1.0)     |                                                                |               | -             |               | -                  |                       |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |               | -             |               | 70                 |                       |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |               |               |               | - 2                |                       |
| 1.1,2,2-Fetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |               | _             |               |                    |                       |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |               | -             |               |                    |                       |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |               | -             |               |                    |                       |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |               | -             |               | 600                |                       |
| 1,1,1-richloroethane   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |               |               |               | 9                  |                       |
| 1,12 Trichloroethane   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |               | -             |               |                    |                       |
| Trichlorfluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND (0.21) - ND (0.21) - ND (0.21)                              | ND (0.21)     |               | ND (0.21)     | 3                  | 1,1,2-Trichloroethane |
| Vinyl chloride         1         ND (0.15)         -         ND (0.18)         -         ND (0.17)         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |               |               |               |                    |                       |
| m_p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |               |               |               |                    |                       |
| 0-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                |               |               |               |                    |                       |
| Xylene (total)         1000         ND (0.17)         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |               |               |               | =                  |                       |
| GC/MS Volatile TIC  Total TIC, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND (0.17) - ND (0.17) - ND (0.17)                              | ND (0.17)     | -             | ND (0.17)     | 1000               | Xylene (total)        |
| Total TIC, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.51 2.36 4.74                                                 | 1.51          |               | 1.43          | -                  | Total VOCs            |
| Total TIC, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |               |               |               |                    | GC/MS Volatile TIC    |
| Total Alkanes         -         0         -         0         -         0           Metals Analysis           Chromium         70         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10 </td <td></td> <td>0 1</td> <td>1 1</td> <td>0 1 1</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                | 0 1           | 1 1           | 0 1 1         |                    |                       |
| Netals Analysis   Chromium   70   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10   <10      |                                                                |               |               |               | -                  |                       |
| Chromium         70         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <100         <100         <100         <100         <10         <100         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10 <t< td=""><td>·     -     0     -     0  </td><td>· ·</td><td>- 1</td><td>v I</td><td>-</td><td>TOTAL / MALICS</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·     -     0     -     0                                      | · ·           | - 1           | v I           | -                  | TOTAL / MALICS        |
| Iron     300     -     <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |               |               |               |                    | Metals Analysis       |
| Sodium 50000 42500 - 45300 - 14500 - 26800 - General Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |               |               | <10           |                    |                       |
| General Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |               |               | -             |                    |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45300   -   14500   -   26800                                  | 45300         | - 1           | 42500         | 50000              | Soaium                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |               |               |               |                    | General Chemistry     |
| Solids, Total Dissolved 500000 <b>212000</b> - <b>230000</b> - <b>175000</b> - <b>96700</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230000   -   175000   -   96700                                | 230000        | - 11          | 212000        | 500000             |                       |
| Sulfate         250000         72900         -         78800         -         115000         -         83100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78800 - 115000 - 83100                                         | 78800         |               |               | 250000             | Sulfate               |

# Evor Phillips Leasing Company (EPLC) Superfund Site Old Bridge, New Jersey Groundwater Elevations Table 3

|           |           |           | Inner                            |                               | Round 2<br>/2015<br><b>Ground</b> |                               | Round 2<br>/2015<br>Ground      |                               | Round 2<br>/2015<br>Ground      |                               | Round 2<br>/2015<br><b>Ground</b> |
|-----------|-----------|-----------|----------------------------------|-------------------------------|-----------------------------------|-------------------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|-----------------------------------|
| Well ID   | Easting   | Northing  | Casing<br>Elevation<br>(ft amsl) | Depth to<br>Water<br>(ft toc) | Water<br>Elevation<br>(ft amsl)   | Depth to<br>Water<br>(ft toc) | Water<br>Elevation<br>(ft amsl) | Depth to<br>Water<br>(ft toc) | Water<br>Elevation<br>(ft amsl) | Depth to<br>Water<br>(ft toc) | Water<br>Elevation<br>(ft amsl)   |
| ISCO MW-1 | 540638.00 | 584218.00 | 46.23                            | NM                            |                                   | NM                            |                                 | NM                            |                                 | 21.69                         | 24.54                             |
| ISCO MW-2 | 540795.00 | 584320.00 | 48.92                            | 21.19                         | 27.73                             | 21.98                         | 26.94                           | 22.21                         | 26.71                           | 22.46                         | 26.46                             |
| ISCO MW-3 | 540912.00 | 584387.00 | 51.28                            | 24.16                         | 27.12                             | 25.34                         | 25.94                           | 25.21                         | 26.07                           | 25.66                         | 25.62                             |
| ISCO MW-4 | 540918.00 | 584326.00 | 44.67                            | 17.60                         | 27.07                             | 18.83                         | 25.84                           | 18.65                         | 26.02                           | 19.14                         | 25.53                             |
| ISCO MW-5 | 540698.00 | 584250.00 | 47.81                            | 21.88                         | 25.93                             | 23.05                         | 24.76                           | 22.85                         | 24.96                           | 23.21                         | 24.60                             |
| ISCO MW-6 | 540785.00 | 584303.00 | 48.78                            | NM                            |                                   | NM                            |                                 | NM                            |                                 | 23.68                         | 25.10                             |
| ISCO MW-7 | 540871.00 | 584335.00 | 46.3                             | 18.92                         | 27.38                             | 20.00                         | 26.30                           | 19.90                         | 26.40                           | 20.30                         | 26.00                             |
| ISCO MW-8 | 540879.00 | 584360.00 | 50.19                            | 22.95                         | 27.24                             | 24.09                         | 26.10                           | 24.03                         | 26.16                           | 24.44                         | 25.75                             |
| ISCO MW-9 | 541020.00 | 584422.00 | 48.79                            | 21.51                         | 27.28                             | 22.72                         | 26.07                           | 22.26                         | 26.53                           | 22.98                         | 25.81                             |
| IW1-BT-2  | 540925.16 | 584418.94 | 52.39                            | 25.25                         | 27.14                             | 26.31                         | 26.08                           | 26.22                         | 26.17                           | 26.60                         | 25.79                             |
| MW-14S    | 540781.83 | 584184.87 | 32.03                            | 5.95                          | 26.08                             | 7.10                          | 24.93                           | 6.92                          | 25.11                           | 7.31                          | 24.72                             |
| MW-10S    | 540619.21 | 584165.36 | 45.27                            | 19.46                         | 25.81                             | 20.65                         | 24.62                           | 20.41                         | 24.86                           | 20.79                         | 24.48                             |
| PZ-1S     | 540551.93 | 584158.57 | 44.24                            | NM                            |                                   | NM                            |                                 | NM                            |                                 | 19.87                         | 24.37                             |
| MW-5I     | 540691.57 | 584309.75 | 49.74                            | NM                            |                                   | NM                            |                                 | NM                            |                                 | 24.94                         | 24.80                             |
| IW1-DR-1  | 540926.52 | 584458.57 | 57.46                            | NM                            |                                   | NM                            |                                 | NM                            |                                 | 27.67                         | 29.79                             |
| MW-11I    | 540543.75 | 584212.88 | 47.92                            | NM                            |                                   | NM                            |                                 | NM                            |                                 | 23.44                         | 24.48                             |





ADAPTED FROM: SOUTH AMBOY, NEW JERSEY USGS QUADRANGLE



EVOR PHILLIPS LEASING COMPANY SUPERFUND SITE OLD BRIDGE, NEW JERSEY

### SITE LOCATION





LEGEND



FIGURE 2

**EVOR PHILLIPS LEASING** COMPANY SUPERFUND SITE







### **Attachment 1**

Treatment Area 1
Injection Summary &
Process Monitoring
Results

### Treatment Area 1 Injection Data Summary (Event II) Evor Phillips Leasing Company Superfund Site Operable Unit 3 (OU3)



| Date<br>Completed      | Injection<br>Point ID | Screen<br>Interval<br>(ft bgs) | Persulfate<br>Concentration<br>(g/L) | Base to<br>Persulfate<br>Molar<br>Ratio | BASP<br>Injection<br>Time<br>(mins) | BASP<br>Volume<br>(gal) | BASP Flow<br>Rate<br>(gpm) | Sodium<br>Persulfate<br>(Ibs) | Sodium<br>Hydroxide<br>(lbs) | Maximum<br>Well Head<br>Pressure<br>(psi) |
|------------------------|-----------------------|--------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------|-------------------------|----------------------------|-------------------------------|------------------------------|-------------------------------------------|
| 4-Jun-15               | 1-38                  | 15.0'-20.0'                    | 50                                   | ~4.52:1                                 | 155                                 | 800.0                   | 5.16                       | 330                           | 1016.5                       | 0-10                                      |
| 4-Jun-15               | 1-39                  | 17.0'-22.0'                    | 50                                   | ~4.52:1                                 | 151                                 | 800.0                   | 5.30                       | 330                           | 1016.5                       | 0-10                                      |
| 4-Jun-15               | 1-40                  | 17.5'-22.5'                    | 50                                   | ~4.52:1                                 | 149                                 | 800.0                   | 5.37                       | 330                           | 1016.5                       | 0-12                                      |
| 4-Jun-15               | 1-41                  | 17.5'-22.5'                    | 50                                   | ~4.52:1                                 | 151                                 | 800.0                   | 5.30                       | 330                           | 1016.5                       | 0-12                                      |
| 4-Jun-15               | 1-42                  | 18.0'-23.0'                    | 50                                   | ~4.52:1                                 | 161                                 | 800.0                   | 4.97                       | 330                           | 1016.5                       | 0-2                                       |
| 4-Jun-15               | 1-44                  | 22.0'-27.0'                    | 50                                   | ~4.52:1                                 | 149                                 | 800.0                   | 5.37                       | 330                           | 1016.5                       | 0-20                                      |
| 5-Jun-15               | 1-43                  | 18.0'-23.0'                    | 50                                   | ~4.52:1                                 | 161                                 | 800.0                   | 4.97                       | 330                           | 1016.5                       | 0-20                                      |
| 5-Jun-15               | 1-45                  | 22.0'-27.0'                    | 50                                   | ~4.52:1                                 | 121                                 | 800.0                   | 6.61                       | 330                           | 1016.5                       | 0-2                                       |
| 5-Jun-15               | 1-46                  | 22.0'-27.0'                    | 50                                   | ~4.52:1                                 | 161                                 | 800.0                   | 4.97                       | 330                           | 1016.5                       | 0-2                                       |
| 5-Jun-15               | 1-47                  | 21.0'-26.0'                    | 50                                   | ~4.52:1                                 | 142                                 | 800.0                   | 5.63                       | 330                           | 1016.5                       | 0-10                                      |
| 5-Jun-15               | 1-48                  | 19.5'-24.5'                    | 50                                   | ~4.52:1                                 | 166                                 | 800.0                   | 4.82                       | 330                           | 1016.5                       | 0-2                                       |
| 5-Jun-15               | 1-49                  | 18.5'-23.5'                    | 50                                   | ~4.52:1                                 | 137                                 | 800.0                   | 5.84                       | 330                           | 1016.5                       | 0-2                                       |
| 5-Jun-15               | 1-50                  | 19.0'-24.0'                    | 50                                   | ~4.52:1                                 | 147                                 | 800.0                   | 5.44                       | 330                           | 1016.5                       | 0-20                                      |
| 5-Jun-15               | 1-51                  | 20.0'-25.0'                    | 50                                   | ~4.52:1                                 | 137                                 | 800.0                   | 5.84                       | 330                           | 1016.5                       | 0-20                                      |
| 5-Jun-15               | 1-52                  | 20.5'-25.5'                    | 50                                   | ~4.52:1                                 | 162                                 | 800.0                   | 4.94                       | 330                           | 1016.5                       | 0-2                                       |
| 8-Jun-15               | 1-13                  | 15.5'-20.5'                    | 50                                   | ~4.52:1                                 | 133                                 | 800.0                   | 6.02                       | 330                           | 1016.5                       | 0-5                                       |
| 8-Jun-15               | 1-25                  | 17.0'-22.0'                    | 50                                   | ~4.52:1                                 | 135                                 | 800.0                   | 5.93                       | 330                           | 1016.5                       | 0-5                                       |
| 8-Jun-15               | 1-27                  | 20.0'-25.0'                    | 50                                   | ~4.52:1                                 | 144                                 | 800.0                   | 5.56                       | 330                           | 1016.5                       | 0-15                                      |
| 8-Jun-15               | 1-29                  | 19.0'-24.0'                    | 50                                   | ~4.52:1                                 | 144                                 | 800.0                   | 5.56                       | 330                           | 1016.5                       | 0-5                                       |
| 8-Jun-15               | 1-31                  | 23.0'-28.0'                    | 50                                   | ~4.52:1                                 | 137                                 | 800.0                   | 5.84                       | 330                           | 1016.5                       | 0-10                                      |
| 8-Jun-15               | 1-33                  | 21.5'-26.5'                    | 50                                   | ~4.52:1                                 | 131                                 | 800.0                   | 6.11                       | 330                           | 1016.5                       | 0-2                                       |
| 8-Jun-15               | 1-34                  | 20.0'-25.0'                    | 50                                   | ~4.52:1                                 | 180                                 | 800.0                   | 4.44                       | 330                           | 1016.5                       | 0-8                                       |
| 8-Jun-15               | 1-35                  | 20.0'-25.0'                    | 50                                   | ~4.52:1                                 | 131                                 | 800.0                   | 6.11                       | 330                           | 1016.5                       | 0-2                                       |
| 8-Jun-15               | 1-36                  | 20.5'-25.5'                    | 50                                   | ~4.52:1                                 | 148                                 | 800.0                   | 5.41                       | 330                           | 1016.5                       | 0-2                                       |
| 8-Jun-15               | 1-37                  | 20.5'-25.5'                    | 50                                   | ~4.52:1                                 | 144                                 | 800.0                   | 5.56                       | 330                           | 1016.5                       | 0-6                                       |
| 9-Jun-15               | 1-16                  | 23.5'-28.5'                    | 50                                   | ~4.52:1                                 | 110                                 | 800.0                   | 7.27                       | 330                           | 1016.5                       | 0-2                                       |
| 9-Jun-15               | 1-17                  | 23.5'-28.5'                    | 50                                   | ~4.52:1                                 | 115                                 | 800.0                   | 6.96                       | 330                           | 1016.5                       | 0-14                                      |
| 9-Jun-15               | 1-18                  | 23.5'-28.5'                    | 50                                   | ~4.52:1                                 | 119                                 | 800.0                   | 6.72                       | 330                           | 1016.5                       | 0-2                                       |
| 9-Jun-15               | 1-19                  | 22.5'-27.5'                    | 50                                   | ~4.52:1                                 | 111                                 | 800.0                   | 7.21                       | 330                           | 1016.5                       | 0-6                                       |
| 9-Jun-15               | 1-20                  | 22.0'-27.0'                    | 50<br>50                             | ~4.52:1                                 | 106                                 | 800.0                   | 7.55                       | 330                           | 1016.5                       | 0-10                                      |
| 9-Jun-15               | 1-21                  | 21.5'-26.5'                    |                                      | ~4.52:1                                 | 114                                 | 800.0                   | 7.02                       | 330<br>330                    | 1016.5                       | 0-14<br>0-2                               |
| 9-Jun-15<br>9-Jun-15   | 1-22<br>1-23          | 23.0'-28.0'                    | 50<br>50                             | ~4.52:1                                 | 104<br>114                          | 800.0                   | 7.69                       | 330                           | 1016.5<br>1016.5             | 0-2                                       |
|                        | 1-23                  | 16.0'-21.0'                    | 50                                   | ~4.52:1                                 | 120                                 | 800.0                   | 7.02                       |                               |                              |                                           |
| 9-Jun-15<br>9-Jun-15   | 1-24                  | 16.0'-21.0'<br>18.0'-23.0'     | 50                                   | ~4.52:1<br>~4.52:1                      | 117                                 | 800.0<br>800.0          | 6.67<br>6.84               | 330<br>330                    | 1016.5<br>1016.5             | 0-18<br>0-10                              |
| 9-Jun-15<br>9-Jun-15   | 1-28                  | 21.0'-26.0'                    | 50                                   | ~4.52:1                                 | 116                                 | 800.0                   | 6.90                       | 330                           | 1016.5                       | 0-10                                      |
| 9-Jun-15<br>9-Jun-15   | 1-28                  | 20.5'-25.5'                    | 50                                   | ~4.52:1                                 | 117                                 | 800.0                   | 6.84                       | 330                           | 1016.5                       | 0-10                                      |
| 9-Jun-15<br>10-Jun-15  | 1-30                  | 25.0'-30.0'                    | 50                                   | ~4.52:1                                 | 117                                 | 800.0                   | 6.96                       | 330                           | 1016.5                       | 0-2                                       |
| 10-Jun-15<br>10-Jun-15 | 1-02                  | 17.0'-22.0'                    | 50                                   | ~4.52:1                                 | 115                                 | 800.0                   | 6.96                       | 330                           | 1016.5                       | 0-40                                      |
| 10-Jun-15<br>10-Jun-15 | 1-07                  | 18.5'-23.5'                    | 50                                   | ~4.52:1                                 | 137                                 | 800.0                   | 5.84                       | 330                           | 1016.5                       | 0-10                                      |
| 10-Jun-15              | 1-08                  | 18.5'-23.5'                    | 50                                   | ~4.52:1                                 | 149                                 | 800.0                   | 5.37                       | 330                           | 1016.5                       | 0-3                                       |
| 10-Jun-15              | 1-10                  | 18.0'-23.0'                    | 50                                   | ~4.52:1                                 | 115                                 | 800.0                   | 6.96                       | 330                           | 1016.5                       | 0-8                                       |
| 10-Jun-15              | 1-10                  | 21.0'-26.0'                    | 50                                   | ~4.52:1                                 | 121                                 | 800.0                   | 6.61                       | 330                           | 1016.5                       | 0-10                                      |
| 10-Jun-15              | 1-11                  | 22.0'-27.0'                    | 50                                   | ~4.52:1                                 | 137                                 | 800.0                   | 5.84                       | 330                           | 1016.5                       | 0-10                                      |
| 10-Jun-15              | 1-12                  | 23.5'-28.5'                    | 50                                   | ~4.52:1                                 | 137                                 | 800.0                   | 5.84                       | 330                           | 1016.5                       | 0-2                                       |
| 10-Jun-15              | 1-14                  | 24.0'-29.0'                    | 50                                   | ~4.52:1                                 | 108                                 | 800.0                   | 7.41                       | 330                           | 1016.5                       | 0-2                                       |
| 10-Jun-15              | 1-32                  | 22.5'-27.5'                    | 50                                   | ~4.52:1                                 | 119                                 | 800.0                   | 6.72                       | 330                           | 1016.5                       | 0-2                                       |
| 11-Jun-15              | 1-01                  | 25.0'-30.0'                    | 50                                   | ~4.52:1                                 | 114                                 | 800.0                   | 7.02                       | 330                           | 1016.5                       | 0-2                                       |
| 11-Jun-15              | 1-01                  | 25.0'-30.0'                    | 50                                   | ~4.52:1                                 | 145                                 | 800.0                   | 5.52                       | 330                           | 1016.5                       | 0-2                                       |
| 11-Jun-15              | 1-03                  | 25.5'-30.5'                    | 50                                   | ~4.52:1                                 | 112                                 | 800.0                   | 7.14                       | 330                           | 1016.5                       | 0-2                                       |
| 11-Jun-15              | 1-04                  | 26.0'-31.0'                    | 50                                   | ~4.52:1                                 | 134                                 | 800.0                   | 5.97                       | 330                           | 1016.5                       | 0-2                                       |
| 11-Jun-15              | 1-05                  | 24.5'-29.5'                    | 50                                   | ~4.52:1                                 | 120                                 | 800.0                   | 6.67                       | 330                           | 1016.5                       | 0-2                                       |
| 11 7011-13             | - 00                  | 27.3 .23.3                     | 30                                   | 7.32.1                                  | 120                                 | 41600.0                 | 6.13                       | 17160.0                       | 52857.1                      | J-2                                       |

Old Bridge, New Jersey ISOTEC #801870

#### Notes:

**BASP** = Base activated sodium persulfate solution.

 $\mathbf{g/L}$  = Grams per liter.

Mins = Minutes.

Gal = Gallons.

**GPM** = Gallons per minute.

**lbs** = Pounds.

**PSI** = Pounds per square inch.

FT BGS = Feet below ground surface.

## Evor Phillips Superfund Site Event II Groundwater Field Monitoring Data - Treatment Area 1 Wells Old Bridge, New Jersey ISOTEC Project #801870



| Point        | Date                 |                             | Time                | Cond          | ORP        | рН             | TDS             | Temp.        | DO           | Persulfate       | DTW            |
|--------------|----------------------|-----------------------------|---------------------|---------------|------------|----------------|-----------------|--------------|--------------|------------------|----------------|
|              |                      |                             |                     | uS            | mV         |                | mg/l            | C.           | mg/l         | mg/l             | ft bgs         |
| MW-2         | 6/1/2015             | 6/1/15 11:00                | 11:00 AM            | 3511          | 75         | 6.69           | 2696            | 15.7         | 10.67        | 7.0              | 21.35          |
| MW-2         | 6/2/2015             | 6/2/15 9:30                 | 9:30 AM             | 4891          | 15         | 6.40           | 3918            | 12.0         | 10.32        | 1.0              | 21.36          |
| MW-2         | 6/3/2015             | 6/3/15 9:00                 | 9:00 AM             | 4131          | 65         | 6.26           | 3252            | 12.7         | 8.78         | 2.4              | 21.29          |
| MW-2         | 6/4/2015             | 6/4/15 9:00                 | 9:00 AM             | 3682          | 153        | 6.45           | 2856            | 14.3         | 8.05         | 4.2              | 21.29          |
| MW-2         | 6/5/2015             | 6/5/15 10:30                | 10:30 AM            | 3264          | 228        | 6.35           | 2489            | 17.6         | 4.81         | 7.0              | 20.97          |
| MW-2<br>MW-2 | 6/8/2015<br>6/9/2015 | 6/8/15 9:30<br>6/9/15 10:45 | 9:30 AM<br>10:45 AM | 2914<br>12000 | 106<br>159 | 6.85<br>13.01  | 2198<br>12000   | 18.6<br>22.8 | 3.58<br>1.60 | 1.4<br>1.4       | 20.58<br>19.20 |
| MW-2         | 6/10/2015            | 6/10/15 10:30               | 10:43 AM            | 12000         | 156        | 12.80          | 12000           | 22.3         | 7.11         | 5250.0           | 19.12          |
| MW-2         | 6/11/2015            | 6/11/15 11:45               | 11:45 AM            | 12000         | 230        | 12.95          | 12000           | 24.7         | 3.20         | 5250.0           | 19.80          |
| MW-2         | 6/15/2015            | 6/15/15 17:45               | 5:45 PM             | 98620         | 218        | 13.09          | 160400          | 17.1         | 1.87         | 7000.0           | 20.57          |
|              | 2, 22, 2020          |                             |                     |               |            |                |                 |              |              | 1                |                |
| MW-3         | 6/1/2015             | 6/1/15 11:00                | 11:00 AM            | 1335          | 86         | 6.63           | 963             | 16.0         | 12.45        | 0.7              | 24.31          |
| MW-3         | 6/2/2015             | 6/2/15 9:30                 | 9:30 AM             | 1371          | 34         | 6.47           | 1000            | 12.0         | 8.10         | 0.7              | 24.17          |
| MW-3         | 6/3/2015             | 6/3/15 9:00                 | 9:00 AM             | 1259          | 91         | 6.42           | 913             | 13.0         | 4.77         | 0.7              | 24.03          |
| MW-3         | 6/4/2015             | 6/4/15 9:00                 | 9:00 AM             | 1276          | 172        | 6.50           | 923             | 14.2         | 4.97         | 2.8              | 23.93          |
| MW-3         | 6/5/2015             | 6/5/15 10:30                | 10:30 AM            | 1315          | 228        | 6.66           | 943             | 17.8         | 3.40         | 4.2              | 23.66          |
| MW-3         | 6/8/2015             | 6/8/15 9:30                 | 9:30 AM             | 2915          | 189        | 7.08           | 2199            | 17.4         | 2.14         | 70.0             | 22.95          |
| MW-3         | 6/9/2015             | 6/9/15 10:45                | 10:45 AM            | 3740          | 170        | 8.39           | 2854            | 18.4         | 3.08         | 245.0            | 23.34          |
| MW-3         | 6/10/2015            | 6/10/15 13:05               | 1:05 PM             | 1109          | 53         | 6.36           | 776             | 21.5         | 1.26         | 0.7              | 23.41          |
| MW-3         | 6/11/2015            | 6/11/15 11:45               | 11:45 AM            | 12000<br>9036 | 267<br>280 | 12.96<br>13.49 | 12000<br>137200 | 25.3         | 2.10         | 5250.0<br>7000.0 | 23.15          |
| MW-3         | 6/15/2015            | 6/15/15 15:15               | 3:15 PM             | 9036          | 280        | 13.49          | 137200          | 23.1         | 1.09         | 7000.0           | 23.81          |
| MW-4         | 6/1/2015             | 6/1/15 11:00                | 11:00 AM            | 117           | 150        | 6.68           | 76              | 15.8         | 10.93        | 0.0              | 17.84          |
| MW-4         | 6/2/2015             | 6/2/15 9:30                 | 9:30 AM             | 118           | 164        | 5.92           | 78              | 11.3         | 8.88         | 0.7              | 17.63          |
| MW-4         | 6/3/2015             | 6/3/15 9:00                 | 9:00 AM             | 110           | 155        | 6.19           | 73              | 12.7         | 7.01         | 0.0              | 17.44          |
| MW-4         | 6/4/2015             | 6/4/15 9:00                 | 9:00 AM             | 114           | 229        | 5.90           | 75              | 13.7         | 6.40         | 0.0              | 17.31          |
| MW-4         | 6/5/2015             | 6/5/15 10:30                | 10:30 AM            | 113           | 300        | 5.48           | 73              | 17.8         | 5.02         | 0.0              | 17.10          |
| MW-4         | 6/8/2015             | 6/8/15 9:30                 | 9:30 AM             | 615           | 392        | 4.54           | 425             | 16.7         | 6.30         | 0.0              | 17.00          |
| MW-4         | 6/9/2015             | 6/9/15 10:45                | 10:45 AM            | 114           | 319        | 6.20           | 73              | 21.1         | 4.70         | 0.0              | 16.85          |
| MW-4         | 6/11/2015            | 6/11/15 11:45               | 11:45 AM            | 112           | 425        | 5.99           | 72              | 22.3         | 6.16         | 0.0              | 16.92          |
| 2024 7       | C /4 /2045           | C/4/4F 44:00                | 11:00 414           | 704           | 126        | 6.60           | 554             | 16.0         | 0.50         | 70.0             | 10.11          |
| MW-7<br>MW-7 | 6/1/2015<br>6/2/2015 | 6/1/15 11:00<br>6/2/15 9:30 | 11:00 AM<br>9:30 AM | 781<br>1588   | 136<br>76  | 6.68<br>6.64   | 551<br>1162     | 16.0<br>12.0 | 8.59<br>5.96 | 70.0<br>250.0    | 19.14<br>19.29 |
| MW-7         | 6/3/2015             | 6/3/15 9:00                 | 9:00 AM             | 1988          | 166        | 6.46           | 1471            | 13.3         | 4.94         | 350.0            | 19.29          |
| MW-7         | 6/4/2015             | 6/4/15 9:00                 | 9:00 AM             | 1883          | 246        | 6.34           | 1386            | 14.3         | 4.90         | 350.0            | 19.05          |
| MW-7         | 6/5/2015             | 6/5/15 10:30                | 10:30 AM            | 1959          | 257        | 6.52           | 1440            | 18.4         | 3.86         | 350.0            | 17.80          |
| MW-7         | 6/8/2015             | 6/8/15 9:30                 | 9:30 AM             | 3064          | 182        | 9.67           | 2316            | 17.4         | 5.92         | 350.0            | 18.34          |
| MW-7         | 6/9/2015             | 6/9/15 10:45                | 10:45 AM            | 9522          | 59         | 12.08          | 8013            | 22.2         | 2.73         | 1750.0           | 17.33          |
| MW-7         | 6/10/2015            | 6/10/15 10:30               | 10:30 AM            | 7956          | 53         | 12.09          | 6552            | 23.4         | 3.29         | 1750.0           | 18.12          |
| MW-7         | 6/11/2015            | 6/11/15 11:45               | 11:45 AM            | 6396          | 117        | 11.70          | 5141            | 24.1         | 4.96         | 3500.0           | 18.14          |
| MW-7         | 6/15/2015            | 6/15/15 16:00               | 4:00 PM             | 2825          | 204        | 12.39          | 29150           | 16.1         | 4.75         | 7000.0           | 18.46          |
|              | 6/1/0015             |                             |                     | 1=00          |            |                |                 | 45.0         |              |                  |                |
| MW-8         | 6/1/2015             | 6/1/15 11:00                | 11:00 AM            | 1596          | 99         | 8.47           | 1160            | 16.3         | 6.02         | 350.0            | 23.15          |
| MW-8         | 6/2/2015<br>6/3/2015 | 6/2/15 9:30                 | 9:30 AM             | 1890<br>1802  | 8<br>143   | 8.09<br>7.26   | 1395            | 12.3<br>13.7 | 4.90<br>4.14 | 350.0<br>350.0   | 23.12          |
| MW-8         | 6/4/2015             | 6/3/15 9:00<br>6/4/15 9:00  | 9:00 AM<br>9:00 AM  | 1989          | 206        | 7.63           | 1324<br>1469    | 14.4         | 4.14         | 250.0            | 23.92<br>22.82 |
| MW-8         | 6/5/2015             | 6/5/15 10:30                | 10:30 AM            | 2246          | 140        | 9.69           | 1666            | 18.8         | 3.43         | 350.0            | 22.27          |
| MW-8         | 6/8/2015             | 6/8/15 9:30                 | 9:30 AM             | 2004          | 161        | 9.32           | 1475            | 18.1         | 3.27         | 245.0            | 21.55          |
| MW-8         | 6/9/2015             | 6/9/15 10:45                | 10:45 AM            | 2285          | 114        | 9.18           | 1684            | 24.3         | 2.92         | 280.0            | 21.94          |
| MW-8         | 6/10/2015            | 6/10/15 11:15               | 11:15 AM            | 2798          | 117        | 8.79           | 2114            | 22.9         | 3.29         | 505.0            | 22.09          |
| MW-8         | 6/11/2015            | 6/11/15 11:45               | 11:45 AM            | 1417          | 239        | 7.76           | 1001            | 25.2         | 3.22         | 280.0            | 22.01          |
| MW-8         | 6/15/2015            | 6/15/15 18:00               | 6:00 PM             | 3902          | 103        | 9.23           | 3100            | 13.5         | 2.78         | 700.0            | 22.54          |
| MW-8         | 6/17/2015            | 6/17/15 9:00                | 9:00 AM             | 6301          | 170        | 12.05          | 5189            | 17.5         | 4.30         | 7000.0           | 22.60          |
|              | C /4 /20: =          | Cla la F · · · · · · ·      | 144.00              | 251           | 461        | 6              | 2:0             | 46.1         |              |                  | 24.05          |
| MW-9         | 6/1/2015             | 6/1/15 11:00                | 11:00 AM            | 351           | 164        | 6.50           | 240             | 16.1         | 5.45         | 0.0              | 21.85          |
| MW-9         | 6/2/2015             | 6/2/15 9:30                 | 9:30 AM             | 380           | 109        | 6.45           | 263             | 12.2         | 4.50         | 0.0              | 21.63          |
| MW-9<br>MW-9 | 6/3/2015<br>6/4/2015 | 6/3/15 9:00<br>6/4/15 9:00  | 9:00 AM<br>9:00 AM  | 360<br>324    | 195<br>233 | 6.04<br>6.22   | 247<br>258      | 13.7<br>14.2 | 3.64<br>3.72 | 0.0              | 21.51<br>21.29 |
| MW-9         | 6/5/2015             | 6/5/15 10:30                | 10:30 AM            | 362           | 248        | 6.15           | 246             | 19.8         | 2.78         | 0.0              | 20.88          |
| MW-9         | 6/8/2015             | 6/8/15 9:30                 | 9:30 AM             | 366           | 339        | 5.45           | 249             | 18.6         | 6.07         | 0.7              | 20.85          |
| MW-9         | 6/9/2015             | 6/9/15 10:45                | 10:45 AM            | 365           | 279        | 5.92           | 244             | 25.2         | 2.59         | 0.0              | 20.90          |
| MW-9         | 6/10/2015            | 6/10/15 13:40               | 1:40 PM             | 396           | 350        | 5.63           | 269             | 21.4         | 3.18         | 0.0              | 20.94          |
|              |                      |                             |                     | _             |            |                | _               | _            |              |                  |                |

## Evor Phillips Superfund Site Event II Groundwater Field Monitoring Data - Treatment Area 1 Wells Old Bridge, New Jersey ISOTEC Project #801870



| Point    | Date      |               | Time     | Cond  | ORP | рН    | TDS    | Temp. | DO   | Persulfate | DTW    |
|----------|-----------|---------------|----------|-------|-----|-------|--------|-------|------|------------|--------|
|          |           |               |          | uS    | mV  |       | mg/l   | C.    | mg/l | mg/l       | ft bgs |
| MW-9     | 6/11/2015 | 6/11/15 11:45 | 11:45 AM | 371   | 362 | 5.54  | 248    | 25.1  | 2.25 | 0.0        | 20.95  |
| MW-9     | 6/15/2015 | 6/15/15 16:30 | 4:30 PM  | 455   | 260 | 5.82  | 312800 | 16.4  | 3.48 | 7.0        | 21.14  |
| MW-9     | 6/17/2015 | 6/17/15 9:00  | 9:00 AM  | 753   | 181 | 4.81  | 533    | 16.1  | 2.58 | 7-14       | 21.17  |
| MW-9     | 6/19/2015 | 6/19/15 0:00  |          | 1337  | 287 | 6.22  | 921    | 14.8  | 2.03 | 70         | 21.12  |
|          |           |               |          |       |     |       |        |       |      |            |        |
| IW1-BT-2 | 6/10/2015 | 6/10/15 12:10 | 12:10 PM | 12000 | 283 | 12.98 | 12000  | 24.8  | 2.02 | 5250.0     | 24.48  |
| IW1-BT-2 | 6/11/2015 | 6/11/15 11:45 | 11:45 AM | 12000 | 62  | 12.22 | 12000  | 26.6  | 1.51 | 5250.0     | 24.04  |
| IW1-BT-2 | 6/15/2015 | 6/15/15 14:10 | 2:10 PM  | 1433  | 128 | 12.47 | 12890  | 20.3  | 2.05 | 7000.0     | 24.79  |

### Notes:

the type of ty

Conductivity and TDS values represented as 12,000 indicate value greater than that number (above the measurement capability of the testing instrument).

DO = Dissolved oxygen
TDS = Total dissolved solids
ORP = Redox Potential
Cond = Conductivity
Persulfate concentrations represented as 5,250 mg/l
indicate concentration greater than that number as this was
the lowest dilution factor utilized when determining
persulfate concentration.





### **Attachment 2**

Treatment Area 2
Injection Summary &
Process Monitoring
Results

# Treatment Area 2 Injection Data Summary (Event II) Evor Phillips Leasing Company Superfund Site Operable Unit 3 (OU3) Old Bridge, New Jersey ISOTEC #801870



| Date<br>Completed | Injection<br>Point ID | Screen<br>Interval<br>(ft bgs) | Persulfate<br>Concentration<br>(g/L) | Base to<br>Persulfate<br>Molar<br>Ratio | BASP<br>Injection<br>Time<br>(mins) | BASP<br>Volume<br>(gal) | BASP Flow<br>Rate<br>(gpm) | Sodium<br>Persulfate<br>(lbs) | Sodium<br>Hydroxide<br>(lbs) | Maximum<br>Well Head<br>Pressure<br>(psi) |
|-------------------|-----------------------|--------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------|-------------------------|----------------------------|-------------------------------|------------------------------|-------------------------------------------|
| 1-Jun-15          | 2-01 D                | 33.5'-38.5'                    | 50                                   | ~4.52:1                                 | 161                                 | 800.0                   | 4.97                       | 330                           | 1016.5                       | 0-25                                      |
| 1-Jun-15          | 2-01 l                | 28.5'-33.5'                    | 50                                   | ~4.52:1                                 | 132                                 | 800.0                   | 6.06                       | 330                           | 1016.5                       | 0-7                                       |
| 1-Jun-15          | 2-02 D                | 34.5'-39.5'                    |                                      |                                         | Multiple                            | refusals and t          | hen clogged s              | creen                         |                              | -                                         |
| 1-Jun-15          | 2-05 D                | 30.0'-35.0'                    | 50                                   | ~4.52:1                                 | 136                                 | 800.0                   | 5.88                       | 330                           | 1016.5                       | 0-3                                       |
| 1-Jun-15          | 2-10 D                | 33.0'-38.0'                    | 50                                   | ~4.52:1                                 | 150                                 | 800.0                   | 5.33                       | 330                           | 1016.5                       | 0-2                                       |
| 1-Jun-15          | 2-10 l                | 28.0'-33.0'                    | 50                                   | ~4.52:1                                 | 142                                 | 800.0                   | 5.63                       | 330                           | 1016.5                       | 0-5                                       |
| 1-Jun-15          | 2-11 D                | 30.5'-35.5'                    | 50                                   | ~4.52:1                                 | 150                                 | 800.0                   | 5.33                       | 330                           | 1016.5                       | 0-5                                       |
| 1-Jun-15          | 2-11 l                | 30.5'-35.5'                    | 50                                   | ~4.52:1                                 | 100                                 | 800.0                   | 8.00                       | 330                           | 1016.5                       | 0-2                                       |
| 1-Jun-15          | 2-12 D                | 32.0'-37.0'                    | 50                                   | ~4.52:1                                 | 161                                 | 800.0                   | 4.97                       | 330                           | 1016.5                       | 0-10                                      |
| 1-Jun-15          | 2-13 D                | 32.5'-37.5'                    | 50                                   | ~4.52:1                                 | 151                                 | 800.0                   | 5.30                       | 330                           | 1016.5                       | 0-5                                       |
| 2-Jun-15          | 2-01 S                | 23.5'-28.5'                    | 50                                   | ~4.52:1                                 | 126                                 | 800.0                   | 6.35                       | 330                           | 1016.5                       | 0-15                                      |
| 2-Jun-15          | 2-02 D                | 34.5'-39.5'                    | 50                                   | ~4.52:1                                 | 138                                 | 800.0                   | 5.80                       | 330                           | 1016.5                       | 0-30                                      |
| 2-Jun-15          | 2-05 I                | 25.0'-30.0'                    | 50                                   | ~4.52:1                                 | 164                                 | 800.0                   | 4.88                       | 330                           | 1016.5                       | 0-15                                      |
| 2-Jun-15          | 2-05 S                | 30.0'-35.0'                    | 50                                   | ~4.52:1                                 | 139                                 | 800.0                   | 5.76                       | 330                           | 1016.5                       | 0-30                                      |
| 2-Jun-15          | 2-10 S                | 23.0'-28.0'                    | 50                                   | ~4.52:1                                 | 162                                 | 800.0                   | 4.94                       | 330                           | 1016.5                       | 0-8                                       |
| 2-Jun-15          | 2-11 S                | 20.5'-25.5'                    | 50                                   | ~4.52:1                                 | 164                                 | 800.0                   | 4.88                       | 330                           | 1016.5                       | 0-11                                      |
| 2-Jun-15          | 2-12                  | 27.0'-32.0'                    | 50                                   | ~4.52:1                                 | 156                                 | 800.0                   | 5.13                       | 330                           | 1016.5                       | 0-30                                      |
| 2-Jun-15          | 2-12 S                | 22.0'-27.0'                    | 50                                   | ~4.52:1                                 | 126                                 | 800.0                   | 6.35                       | 330                           | 1016.5                       | 0-20                                      |
| 2-Jun-15          | 2-13                  | 27.5'-32.5'                    | 50                                   | ~4.52:1                                 | 160                                 | 800.0                   | 5.00                       | 330                           | 1016.5                       | 0-30                                      |
| 2-Jun-15          | 2-13 S                | 22.5'-27.5'                    | 50                                   | ~4.52:1                                 | 127                                 | 800.0                   | 6.30                       | 330                           | 1016.5                       | 0-10                                      |
| 3-Jun-15          | 2-02 I                | 29.5'-34.5'                    | 50                                   | ~4.52:1                                 | 137                                 | 800.0                   | 5.84                       | 330                           | 1016.5                       | 0-20                                      |
| 3-Jun-15          | 2-02 S                | 24.5'-29.5'                    | 50                                   | ~4.52:1                                 | 123                                 | 800.0                   | 6.50                       | 330                           | 1016.5                       | 0-15                                      |
| 3-Jun-15          | 2-03 D                | 34.0'-39.0'                    | 50                                   | ~4.52:1                                 | 118                                 | 800.0                   | 6.78                       | 330                           | 1016.5                       | 0-5                                       |
| 3-Jun-15          | 2-06 D                | 31.0'-36.0'                    | 50                                   | ~4.52:1                                 | 137                                 | 800.0                   | 5.84                       | 330                           | 1016.5                       | 0-2                                       |
| 3-Jun-15          | 2-06                  | 26.0'-31.0'                    | 50                                   | ~4.52:1                                 | 115                                 | 800.0                   | 6.96                       | 330                           | 1016.5                       | 0-2                                       |
| 3-Jun-15          | 2-06 S                | 21.0'-26.0'                    | 50                                   | ~4.52:1                                 | 120                                 | 800.0                   | 6.67                       | 330                           | 1016.5                       | 0-40                                      |
| 3-Jun-15          | 2-07 D                | 32.0'-37.0'                    | 50                                   | ~4.52:1                                 | 146                                 | 800.0                   | 5.48                       | 330                           | 1016.5                       | 0-2                                       |
| 3-Jun-15          | 2-07 I                | 27.0'-32.0'                    | 50                                   | ~4.52:1                                 | 121                                 | 800.0                   | 6.61                       | 330                           | 1016.5                       | 0-2                                       |
| 3-Jun-15          | 2-07 S                | 22.0'-27.0'                    | 50                                   | ~4.52:1                                 | 135                                 | 800.0                   | 5.93                       | 330                           | 1016.5                       | 0-30                                      |
| 3-Jun-15          | 2-08 D                | 33.0'-38.0'                    | 50                                   | ~4.52:1                                 | 127                                 | 800.0                   | 6.30                       | 330                           | 1016.5                       | 0-2                                       |
| 3-Jun-15          | 2-08                  | 28.0'-33.0'                    | 50                                   | ~4.52:1                                 | 116                                 | 800.0                   | 6.90                       | 330                           | 1016.5                       | 0-2                                       |
| 3-Jun-15          | 2-08 S                | 23.0'-28.0'                    | 50                                   | ~4.52:1                                 | 112                                 | 800.0                   | 7.14                       | 330                           | 1016.5                       | 0-12                                      |
| 3-Jun-15          | 2-09 D                | 32.5'-37.5'                    | 50                                   | ~4.52:1                                 | 127                                 | 800.0                   | 6.30                       | 330                           | 1016.5                       | 0-20                                      |
| 3-Jun-15          | 2-09                  | 27.5'-32.5'                    | 50                                   | ~4.52:1                                 | 115                                 | 800.0                   | 6.96                       | 330                           | 1016.5                       | 0-10                                      |
| 3-Jun-15          | 2-09 S                | 22.5'-27.5'                    | 50                                   | ~4.52:1                                 | 118                                 | 800.0                   | 6.78                       | 330                           | 1016.5                       | 0-40                                      |
| 4-Jun-15          | 2-03 I                | 29.0'-34.0'                    | 50                                   | ~4.52:1                                 | 155                                 | 800.0                   | 5.16                       | 330                           | 1016.5                       | 0-2                                       |
| 4-Jun-15          | 2-03 S                | 24.0'-29.0'                    | 50                                   | ~4.52:1                                 | 155                                 | 800.0                   | 5.16                       | 330                           | 1016.5                       | 0-20                                      |
| 4-Jun-15          | 2-04 D                | 34.5'-39.5'                    | 50                                   | ~4.52:1                                 | 161                                 | 800.0                   | 4.97                       | 330                           | 1016.5                       | 0-2                                       |
| 4-Jun-15          | 2-041                 | 29.5'-34.5'                    | 50                                   | ~4.52:1                                 | 157                                 | 800.0                   | 5.10                       | 330                           | 1016.5                       | 0-2                                       |
| 5-Jun-15          | 2-04 S                | 24.5'-29.5'                    | 50                                   | ~4.52:1                                 | 161                                 | 800.0                   | 4.97                       | 330                           | 1016.5                       | 0-10                                      |
| Totals            | _                     |                                |                                      |                                         |                                     | 31200.0                 | 5.88                       | 12870.0                       | 39642.9                      |                                           |

### Notes:

**BASP** = Base activated sodium persulfate solution.

g/L = Grams per liter.Mins = Minutes.Gal = Gallons.

**GPM** = Gallons per minute.

**lbs** = Pounds.

**PSI** = Pounds per square inch.

**FT BGS** = Feet below ground surface.

## Evor Phillips Superfund Site Event II Groundwater Field Monitoring Data - Treatment Area 2 Wells Old Bridge, New Jersey ISOTEC Project #801870



| Point | Date      |               | Time     | Cond  | ORP | pН    | TDS  | Temp. | DO    | Persulfate | DTW    |
|-------|-----------|---------------|----------|-------|-----|-------|------|-------|-------|------------|--------|
|       |           |               |          | uS    | mV  |       | mg/l | C.    | mg/l  | mg/l       | ft bgs |
| MW-5  | 6/1/2015  | 6/1/15 11:00  | 11:00 AM | 241   | 156 | 6.12  | 161  | 16.2  | 7.77  | 0.0        | 21.58  |
| MW-5  | 6/2/2015  | 6/2/15 9:30   | 9:30 AM  | 264   | 101 | 5.83  | 178  | 12.6  | 5.50  | 0.0        | 21.38  |
| MW-5  | 6/3/2015  | 6/3/15 9:45   | 9:45 AM  | 849   | 110 | 9.27  | 600  | 15.9  | 2.85  | 250.0      | 21.29  |
| MW-5  | 6/3/2015  | 6/3/15 15:00  | 3:00 PM  | 303   | 110 | 5.73  | 203  | 18.7  | 5.85  | 2.4        | 21.31  |
| MW-5  | 6/4/2015  | 6/4/15 10:00  | 10:00 AM | 968   | 213 | 7.18  | 687  | 17.8  | 7.02  | 525.0      | 21.27  |
| MW-5  | 6/4/2015  | 6/4/15 14:00  | 2:00 PM  | 2522  | 49  | 11.24 | 1845 | 18.1  | 6.48  | 1000.0     | 21.27  |
| MW-5  | 6/5/2015  | 6/5/15 10:30  | 10:30 AM | 1306  | 40  | 12.35 | 1145 | 18.7  | 3.45  | 1750.0     | 21.17  |
| MW-5  | 6/5/2015  | 6/5/15 13:15  | 1:15 PM  | 1237  | 60  | 12.41 | 1077 | 17.0  | 3.48  | 1750.0     | 21.17  |
| MW-5  | 6/5/2015  | 6/5/15 15:00  | 3:00 PM  | 11020 | 22  | 12.34 | 9464 | 21.0  | 20.00 | 1750.0     | 21.17  |
| MW-5  | 6/8/2015  | 6/8/15 9:30   | 9:30 AM  | 10960 | 29  | 12.46 | 9441 | 18.3  | 2.66  | 1750.0     | 21.19  |
| MW-5  | 6/9/2015  | 6/9/15 10:45  | 10:45 AM | 5064  | 67  | 11.85 | 3996 | 22.6  | 9.31  | 1750.0     | 21.30  |
| MW-5  | 6/10/2015 | 6/10/15 10:30 | 10:30 AM | 5159  | 64  | 11.99 | 4071 | 23.2  | 1.98  | 1750.0     | 21.35  |
| MW-5  | 6/11/2015 | 6/11/15 11:45 | 11:45 AM | 8243  | 63  | 12.15 | 6802 | 24.2  | 2.46  | 3500.0     | 21.38  |
| MW-5  | 6/15/2015 | 6/15/15 17:00 | 5:00 PM  | 3023  | -21 | 11.82 | 2368 | 15.3  | 1.50  | 7000.0     | 23.81  |
|       | •         |               | •        |       |     | •     |      |       |       |            |        |

### Notes:

ft bgs = feet below ground surface
uS = micro siemens
mV = milli volts
mg/l = milligrams per liter
C = degree Celsius
NA = not analyzed
DTW = Depth to water
Conductivity and TDS values represented as 12,000 in

Conductivity and TDS values represented as 12,000 indicate value greater than that number (above the measurement capability of the testing instrument).

DO = Dissolved oxygen
TDS = Total dissolved solids
ORP = Redox Potential
Cond = Conductivity

Persulfate concentrations represented as 5,250 mg/l indicate concentration greater than that number as this was the lowest dilution factor utilized when determining persulfate concentration.





Attachment 3
Groundwater Low-Flow
Sampling Logs

### O'BRIEN 5 GERE **Low Flow Ground Water Sampling Log** Date: 7/22/2015 Personnel: K. Biegert Weather: Sunny, 80° Pump/Controller ID#: ISCO-MW-2 Site Name: **Evor Phillips** Monsoon Well #: Sampling Method: 51308 Site Location: Old Bridge, NJ Low-Flow Project #: Monitoring Equip. Used (include ID#): Well information: Well Diameter Multipliers Measurements taken from Depth of Well\*: 23.55 ft. 2 in. = 0.163 gal/ft Top of Well Casing 21.19 ft. Depth to Water\*: 4 in. = 0.653 gal/ftTop of Protective Casing Length of Water Column: 2.31 ft. 6 in. = 1.469 gal/ft 8 in. = 2.611 gal/ft Pump Intake Depth: ft. (Other, Specify) 2 in. Well Diameter: Start Purge Time: 1355 indicate units Depth To Specific **Elapsed Temperature** ORP Dissolved **Turbidity** Flow Rate Water Conductivity Time (Celsius) (mV) Oxygen (mg/l) (NTU) (ml/min) (mS/cm) (ft bmp) pH (SU) 1356 21.75 15.42 14.00 36.1 59 0.00 999 200 14.68 0.00 999 200 1401 22.40 14.00 37.6 143 1405 Run Dry 1458 23.55 16.56 14.00 33.3 211 0.84 999 200 Post Sample Reading Stabilization $\Delta \leq 0.3$ ± 3% $\pm 0.1$ ± 3% ± 10 mV ± 10% ± 10% $100 \le X \le 500$ End Purge Time: 1515 Water sample: Time collected: Total volume of purged water removed: 1500 1.5 gal Physical appearance at start Physical appearance at sampling Color Yellow, Cloudy Yellow, Cloudy Color Odor None Odor None Sheen/Free Product None Sheen/Free Product None **Analytical Parameters:** Container Size Container Type # Collected Field Filtered Preservative Lab 40 ml Vial Ν HCL Accutest 500 ml Ρ N/YNone Accutest Р 500 ml Ν HNO3 Accutest

Well ran dry

Notes:

0.367 gal = well volume, purged 1 gallon pH = 14

Persulfate 1,000 mg/L at 100x dilution



|                 | DITIEN                        | OGERE                    |                      | LOW F                               | iow Groui      | iu water S                 | amping             | Log                   |
|-----------------|-------------------------------|--------------------------|----------------------|-------------------------------------|----------------|----------------------------|--------------------|-----------------------|
| Date:           | 7/23/2015                     | Persoi                   | nnel:                | K. Biegerl                          | t / K. Twombly | Weather:                   | Sunny,             | 70°                   |
| Site Name:      | Evor Phillips                 | <br>Pump/                | Controller ID        | <br>D#:                             |                | Well #:                    | ISCO-M\            | <br>N-3               |
| Site Location:  | Old Bridge, NJ                | <br>Sampl                | ing Method:          | Lo                                  | w-Flow         | Project #:                 | 51308              |                       |
|                 | uip. Used (includ             | _                        |                      |                                     |                |                            |                    |                       |
| Well informat   |                               | C 1D#).                  | Wall Diama           | eter Multipliers                    |                | * Measuremer               | to taken from      |                       |
| Depth of Well*  |                               | 29.79 ft.                | 2 in. = 0.1          | •                                   |                | X                          | Top of Well Ca     | noina                 |
| Depth to Wate   |                               | 29.79 ft.                | 4 in. = 0.1          | •                                   |                | ^                          | Top of Protect     |                       |
| Length of Wate  |                               | ft.                      | 6 in. = 1.469 gal/ft |                                     |                |                            | 1 00 01 1 101001   | ive easing            |
| Pump Intake D   |                               | ft.                      | 8 in. = 2.6          | -                                   |                |                            | (Other, Specify    | y)                    |
| Well Diameter   | · —                           | 2 in.                    |                      | Ü                                   |                |                            | 1, , ,             | ,,                    |
| Start Purge Tir | me:                           | 0800                     | •                    | indicate units                      |                |                            |                    |                       |
| Elapsed<br>Time | Depth To<br>Water<br>(ft bmp) | Temperature<br>(Celsius) | pH (SU)              | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)    | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU) | Flow Rate<br>(ml/min) |
| 0803            | 24.53                         | 16.76                    | 14.00                | 42.1                                | 354            | 9.11                       | 999                | 350                   |
| 0808            | 24.51                         | 14.50                    | 14.00                | 26.5                                | 332            | 7.53                       | 999                | 350                   |
| 0813            | 24.53                         | 13.87                    | 14.00                | 25.6                                | 333            | 6.40                       | 999                | 350                   |
| 0818            | 24.51                         | 13.90                    | 14.00                | 27.9                                | 340            | 5.37                       | 999                | 350                   |
| 0823            | 24.51                         | 13.79                    | 14.00                | 26.8                                | 338            | 4.46                       | 999                | 350                   |
| 0828            | 24.49                         | 13.79                    | 14.00                | 27.1                                | 339            | 3.70                       | 999                | 350                   |
| 0833            | 24.52                         | 13.67                    | 14.00                | 26.6                                | 338            | 3.05                       | 999                | 350                   |
| 0838            | 24.39                         | 13.98                    | 14.00                | 31.6                                | 346            | 1.53                       | 999                | 350                   |
| 0843            | 24.40                         | 14.11                    | 14.00                | 30.0                                | 343            | 0.00                       | 999                | 350                   |
| 0848            | 24.36                         | 13.89                    | 14.00                | 27.3                                | 340            | 0.00                       | 999                | 350                   |
| 0853            | 24.52                         | 13.33                    | 14.00                | 25.4                                | 333            | 0.00                       | 999                | 350                   |
| 0858            | 24.55                         | 12.80                    | 14.00                | 26.8                                | 337            | 0.00                       | 600                | 350                   |
| 0903            | 24.55                         | 12.79                    | 14.00                | 27.5                                | 340            | 0.00                       | 999                | 350                   |
| 0908            | 24.55                         | 12.84                    | 14.00                | 27.8                                | 341            | 0.00                       | 999                | 350                   |
| 0913            | 24.54                         | 12.85                    | 14.00                | 27.3                                | 341            | 0.00                       | 999                | 350                   |
| 0918            | 24.53                         | 12.93                    | 14.00                | 27.3                                | 341            | 0.00                       | 999                | 350                   |
|                 |                               |                          |                      |                                     |                |                            |                    |                       |
|                 |                               |                          |                      |                                     |                |                            |                    |                       |
|                 |                               |                          |                      |                                     |                |                            |                    |                       |
| Stabilization   | Δ ≤ 0.3'                      | ± 3%                     | ± 0.1                | ± 3%                                | ± 10 mV        | ± 10%                      | ± 10%              | 100 ≤ X ≤ 500         |
| End Purge Tim   | ne: <u></u>                   | 930                      |                      |                                     |                |                            |                    |                       |
| Water sample    |                               |                          |                      | Tatal calcus                        |                |                            | 00.05.1            |                       |
| Time collected  | : 0925<br>earance at start    | _                        |                      | Total volume of                     | . •            | emovea:<br>earance at sam  | 26.25 L            |                       |
| Filysical appe  |                               | own/Cloudy               |                      |                                     | Filysical app  | Color                      | Brown/Cloudy       |                       |
|                 |                               | one                      | =                    |                                     |                | Odor                       | None               | -                     |
| Sheen/Free Pr   | oduct No                      | one                      | -                    |                                     | Sheen/F        | ree Product                | None               | <u>.</u>              |
| Analytical Par  | ameters:                      |                          |                      |                                     |                |                            |                    |                       |
| Container S     | Size Co                       | ontainer Type            | # Collect            | ed Field                            | d Filtered     | Preservat                  | ive                | Lab                   |
| 40 ml           |                               | Vial                     |                      |                                     | N              | HCL                        |                    | Accutest              |
| 500 ml          |                               | P                        |                      | N / Y None                          |                |                            | Accutest           |                       |
| 500 ml          |                               | Р                        |                      |                                     | N              | HNO3                       |                    | Accutest              |
|                 |                               |                          |                      |                                     |                |                            | <del>-  </del>     |                       |
|                 |                               |                          | <u> </u>             |                                     |                |                            |                    |                       |
| Notes:          | Persulfate 70 m               | ng/L at 200x dilution    | n                    |                                     |                | <u> </u>                   |                    |                       |
|                 | 4 VOC vials                   |                          |                      |                                     |                |                            |                    |                       |
|                 |                               |                          |                      |                                     |                |                            |                    |                       |
|                 |                               |                          |                      |                                     |                |                            |                    |                       |

| 9                                | BRIE                        | N & GERE                                           |                            | Low FI                        | ow Grou       | nd Water S                   | amplin           | ıg Log         |
|----------------------------------|-----------------------------|----------------------------------------------------|----------------------------|-------------------------------|---------------|------------------------------|------------------|----------------|
| Date:                            | 7/22/201                    | 15 Perso                                           | onnel:                     | K. <sup>-</sup>               | Гeitsma       | Weather:                     | Sur              | nny, 80        |
| Site Name:                       | Evor Phill                  |                                                    | o/Controller ID            |                               | onsoon        | - Well #:                    |                  | D-MW-4         |
|                                  |                             | <del>·                                      </del> | oling Method:              |                               | w-Flow        | _                            |                  | 1308           |
| Site Location:                   |                             |                                                    | ning wethou.               | LO                            | W-FIOW        | Project #:                   | <u> </u>         | 1306           |
| Monitoring Equ                   |                             | clude ID#):                                        | 1                          |                               |               |                              |                  |                |
| Well informati                   |                             |                                                    |                            | eter Multipliers              |               | * Measuremen                 | ì                |                |
| Depth of Well*:                  |                             | 19.67 ft.                                          | 2 in. = 0.1                | •                             |               | Х                            | Top of We        |                |
| Depth to Water                   |                             | 17.60 ft.                                          | 4 in. = 0.6                | -                             |               |                              | Top of Pro       | tective Casing |
| Length of Wate<br>Pump Intake D  |                             | ft.                                                | 6 in. = 1.4<br>8 in. = 2.6 | •                             |               |                              | (Other, Sp       | necify)        |
| Well Diameter:                   | •                           | it.                                                | 0 111. = 2.0               | ir gai/it                     |               |                              | (Other, Sp       | ecity)         |
| Start Purge Tin                  |                             | 0850                                               |                            |                               |               |                              |                  |                |
| Elapsed<br>Time                  | Depth T<br>Water<br>(ft bmp | Temperature                                        | pH (SU)                    | Specific Conductivity (mS/cm) | ORP<br>(mV)   | Dissolved<br>Oxygen (mg/l)   | Turbidi<br>(NTU) | -              |
| 0850                             | 17.95                       | 10.93                                              | 4.23                       | 0.093                         | 304           | 10.42                        | 151              | -              |
| 0855                             | -                           | 10.87                                              | 3.83                       | 0.097                         | 340           | 5.43                         | 103              | 350            |
| 0900                             | -                           | 11.07                                              | 3.73                       | 0.099                         | 354           | 5.29                         | 43               | 300            |
| 0905                             | -                           | 11.22                                              | 3.73                       | 0.098                         | 357           | 4.89                         | 31.8             | 300            |
| 0910                             | -                           | 11.36                                              | 3.71                       | 0.098                         | 362           | 4.93                         | 20.8             | 300            |
| 0915                             | -                           | 11.36                                              | 3.69                       | 0.099                         | 364           | 4.99                         | 9.1              | 300            |
| 0920                             | -                           | 11.40                                              | 3.66                       | 0.099                         | 370           | 4.71                         | 1.2              | 300            |
| 0925                             | -                           | 11.56                                              | 3.66                       | 0.099                         | 369           | 4.82                         | 0.0              | 300            |
|                                  |                             |                                                    |                            |                               |               |                              |                  |                |
|                                  |                             |                                                    |                            |                               |               |                              |                  |                |
|                                  |                             |                                                    |                            |                               |               |                              |                  |                |
|                                  |                             |                                                    |                            |                               |               |                              |                  |                |
|                                  |                             |                                                    |                            |                               |               |                              |                  |                |
|                                  |                             |                                                    |                            |                               |               |                              |                  |                |
|                                  |                             |                                                    |                            |                               |               |                              |                  |                |
|                                  |                             |                                                    |                            |                               |               |                              |                  |                |
|                                  |                             |                                                    |                            |                               |               |                              |                  |                |
|                                  |                             |                                                    |                            |                               |               |                              |                  |                |
| Stabilization                    | Δ ≤ 0.3                     | ± 3%                                               | ± 0.1                      | ± 3%                          | ± 10 mV       | ± 10%                        | ± 10%            | 100 ≤ X ≤ 500  |
|                                  |                             |                                                    | 20.1                       | 2070                          | 2101111       | 2 1070                       | 2.10%            | 100171100      |
| End Purge Tim                    |                             | 0925                                               |                            |                               |               |                              |                  |                |
| Water sample                     |                             | 205                                                |                            | <b>-</b>                      |               |                              | 44 75 1          |                |
| Time collected:<br>Physical appe |                             | 925<br>tart                                        |                            | Total volume of               | . •           | removea:<br>pearance at samp | 11.75 L          |                |
| Рпуѕісаї арре                    | Color                       | Cloudy/Yellowish                                   |                            |                               | riiysicai app | -                            | Clear/Yello      | nwish          |
|                                  | Odor                        | None                                               | _                          |                               |               | Odor                         | None             | <u>owisi</u> 1 |
| Sheen/Free Pr                    |                             | None                                               | <b>-</b><br>-              |                               | Sheen/        |                              | None             |                |
| Analytical Par                   | ameters:                    |                                                    |                            |                               |               |                              |                  |                |
| Container S                      | Size                        | Container Type                                     | # Collect                  | ed Field                      | l Filtered    | Preservat                    | ive              | Lab            |
| 40 ml                            |                             | Vial                                               |                            |                               | N             | HCL                          |                  | Accutest       |
| 500 ml                           |                             | Р                                                  |                            |                               | N / Y         | None                         |                  | Accutest       |

Ν

HNO3

500 ml

Notes:

Ρ

Water level below top of pump

Accutest



K. Biegert 7/22/2015 Personnel: Weather: Sunny, 80° Date: ISCO-MW-5 Site Name: Evor Phillips Pump/Controller ID#: Monsoon Well #: Site Location: Old Bridge, NJ Sampling Method: Low-Flow Project #: 51308 Monitoring Equip. Used (include ID#): Well information: Well Diameter Multipliers Measurements taken from Depth of Well\*: 32.60 ft. 2 in. = 0.163 gal/ftΧ Top of Well Casing 21.88 ft. Depth to Water\*: 4 in. = 0.653 gal/ftTop of Protective Casing Length of Water Column: 6 in. = 1.469 gal/ft ft. Pump Intake Depth: ft. 8 in. = 2.611 gal/ft (Other, Specify) 2 in. Well Diameter: Start Purge Time: 1207 indicate units Depth To Specific **Elapsed Temperature** ORP Dissolved **Turbidity** Flow Rate Water Conductivity Time (Celsius) (mV) Oxygen (mg/l) (NTU) (ml/min) (ft bmp) pH (SU) (mS/cm) 1208 21.92 14.07 7.50 0.404 -43 0.00 999 400 400 1213 21.92 12.27 6.24 0.278 40 0.00 999 1218 21.92 11.93 6.01 0.301 49 0.00 999 400 1223 21.92 11.79 5.96 0.310 53 0.00 1000 400 1228 21.92 11.76 5.89 0.308 59 0.00 684 400 1233 21.92 11.57 5.92 0.305 60 0.00 333 400 1238 21.92 11.59 5.86 0.300 67 0.00 246 400 1243 21.92 11.56 5.72 0.297 73 0.00 169 400 1248 21.92 11.51 5.75 0.295 75 0.00 119 400 1253 21.92 11.47 5.71 0.293 81 0.00 80 400 1258 21.92 11.37 5.73 0.293 83 0.00 65.3 400 1303 21.92 11.45 5.71 0.289 89 0.00 35.4 400 1308 21.92 11.39 5.71 0.282 93 0.00 18.5 400 14.8 1313 21.92 11.37 5.77 0.284 93 0.00 400 5.74 400 1318 21.92 11.39 0.283 98 0.00 12 Stabilization  $\Delta \leq 0.3$ ± 3%  $\pm 0.1$ ± 3% ± 10 mV ± 10% ± 10%  $100 \le X \le 500$ End Purge Time: 1325 Water sample: Time collected: 1320 Total volume of purged water removed: 30 L Physical appearance at start Physical appearance at sampling Color Clear Brown, Cloudy Color Odor None Odor None Sheen/Free Product None Sheen/Free Product None Analytical Parameters: Container Size # Collected Field Filtered Preservative Container Type Lab 40 ml Vial Ν HCL Accutest 500 ml Ρ N/YNone Accutest Ρ 500 ml Ν HNO3 Accutest Notes: Sample ID: 2RNDL-ISCO-MW-5-072215 **DUP** collected Persulfate 0-0.7 mg/L (no dilution)



7/22/2015 Personnel: K. Teitsma / K. Twombly Weather: 80° Sunny Date: Site Name: Evor Phillips Pump/Controller ID#: 023367 / R260581 Well #: ISCO-MW-7 Site Location: Old Bridge, NJ Sampling Method: Low-Flow Project #: 51308 Monitoring Equip. Used (include ID#): Well information: Well Diameter Multipliers Measurements taken from Depth of Well\*: 22.60 ft. 2 in. = 0.163 gal/ftΧ Top of Well Casing 18.92 ft. Depth to Water\*: 4 in. = 0.653 gal/ftTop of Protective Casing Length of Water Column: 6 in. = 1.469 gal/ft ft. Pump Intake Depth: ft. 8 in. = 2.611 gal/ft (Other, Specify) 2 in. Well Diameter: Start Purge Time: 1143 indicate units Depth To **Specific Elapsed Temperature** ORP Dissolved **Turbidity** Flow Rate Water Conductivity Time (Celsius) (mV) Oxygen (mg/l) (NTU) (ml/min) (ft bmp) pH (SU) (mS/cm) 1148 19.54 11.96 13.14 4.56 -3 5.16 0.0 400 1155 19.69 12.57 13.15 4.28 -8 3.37 0.0 350 1200 19.67 11.97 13.40 4.96 -14 2.55 0.0 350 5.13 1205 19.67 12.35 13.42 -15 2.09 0.0 350 1210 19.27 13.31 13.13 4.98 -14 1.57 0.0 350 1215 19.72 11.12 13.50 4.74 -12 0.92 0.0 350 1220 19.56 11.70 13.59 5.03 -14 0.65 0.0 300 1225 19.59 11.52 13.50 5.31 -10 0.55 0.0 300 1230 19.52 11.69 13.49 5.15 -8 0.27 0.0 300 1235 19.54 11.48 13.58 5.60 -8 0.00 300 1240 19.59 11.62 13.64 6.02 -5 0.00 1000 300 -2 1245 19.60 11.78 13.58 5.91 0.00 0.0 300 1250 19.61 11.32 13.48 4.83 2 0.00 0.0 300 1255 11.18 13.63 5.65 1 0.00 0.0 300 19.68 9 300 1300 19.65 11.80 13.48 5.60 0.00 300 1305 13.46 8 0.00 0.0 300 19.59 11.86 5.11 1310 19.51 12.01 13.44 4.95 8 0.00 0.0 300 1315 5 0.0 300 19.60 11.01 13.60 5.53 0.00 1320 19.68 12.31 13.51 6.03 11 0.00 182 300 Stabilization  $\Delta \leq 0.3$ ± 3%  $\pm 0.1$ ± 3% ± 10 mV ± 10% ± 10%  $100 \le X \le 500$ End Purge Time: 1410 Water sample: Time collected: 1400 Total volume of purged water removed: 39.25 L Physical appearance at start Physical appearance at sampling Color Brownish/Cloudy Brownish/Cloudy Color Odor None Odor None Sheen/Free Product None Sheen/Free Product None Analytical Parameters: Container Size Field Filtered Preservative Container Type # Collected Lab 40 ml Vial Ν HCL Accutest 500 ml Ρ N/YNone Accutest Ρ 500 ml Ν HNO3 Accutest Notes: Turbidity out of range of meter

|                               |                        |            |                          |                            |                                     |              |                            | _              |         |                       |
|-------------------------------|------------------------|------------|--------------------------|----------------------------|-------------------------------------|--------------|----------------------------|----------------|---------|-----------------------|
| 60                            | BRII                   | ENE        | GERE                     |                            | Low F                               | low Grou     | nd Water S                 | ampli          | ng L    | .og                   |
| Date:                         | 7/22/2                 | 2015       | Persor                   | nnel:                      | K. '                                | Teitsma      | Weather:                   | 80             | o Suni  | ny                    |
| Site Name:                    | Evor Pl                |            | Pump/                    | Controller ID              |                                     | onsoon       | Well #:                    |                | O-MV    |                       |
| Site Location:                |                        |            | •                        | ing Method:                |                                     | w-Flow       | Project #:                 |                | 51308   |                       |
|                               |                        |            |                          | ing wethou.                |                                     | W-1 10W      | 1 Toject #.                |                | 31300   |                       |
| Monitoring Equ                |                        | (IIICIUUE  | ID#)                     | Wall Diama                 | tau Multipliana                     | <br>         | * Measurements taken from  |                |         |                       |
| Depth of Well*                |                        |            | 22 60 ft                 |                            | eter Multipliers                    |              |                            |                |         | sing                  |
| Depth to Wate                 |                        |            | 22.60 ft.<br>18.92 ft.   | 2 in. = 0.1<br>4 in. = 0.6 | -                                   |              |                            | Top of W       |         | sing<br>ve Casing     |
| Length of Wate                |                        | · —        | 10.92 It.                | 6 in. = 1.4                | -                                   |              |                            | TOP OF I       | iolecti | ve casing             |
| Pump Intake D                 |                        | ·· —       | ft.                      | 8 in. = 2.6                | -                                   |              |                            | (Other, S      | Specify | ·)                    |
| Well Diameter                 |                        |            | 2 in.                    |                            | Ü                                   |              |                            | ,              | . ,     | ,                     |
| Start Purge Tir               | me:                    |            |                          |                            | indicate units                      |              |                            |                |         |                       |
| Elapsed<br>Time               | Depth<br>Wat<br>(ft br | er         | Temperature<br>(Celsius) | pH (SU)                    | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)  | Dissolved<br>Oxygen (mg/l) | Turbic<br>(NTL | -       | Flow Rate<br>(ml/min) |
| 1325                          | 19.5                   | 55         | 11.41                    | 13.44                      | 4.86                                | 14           | 0.00                       | 0.0            |         | 300                   |
| 1330                          | 19.5                   | 51         | 11.80                    | 13.44                      | 4.93                                | 14           | 0.00                       | 0.0            |         | 300                   |
| 1335                          | 19.6                   | 61         | 11.07                    | 13.52                      | 4.91                                | 12           | 0.00                       | 0.0            |         | 300                   |
| 1340                          | 19.6                   | 69         | 11.30                    | 13.60                      | 5.90                                | 12           | 0.00                       | 0.0            |         | 300                   |
| 1345                          | 19.6                   | 67         | 11.36                    | 13.54                      | 5.72                                | 17           | 0.00                       | 0.0            |         | 300                   |
| 1350                          | 19.6                   | 69         | 11.40                    | 13.57                      | 5.68                                | 18           | 0.00                       | 0.0            |         | 300                   |
|                               |                        |            |                          |                            |                                     |              |                            |                |         |                       |
|                               |                        |            |                          |                            |                                     |              |                            |                |         |                       |
|                               |                        |            |                          |                            |                                     |              |                            |                |         |                       |
|                               |                        |            |                          |                            |                                     |              |                            |                |         |                       |
|                               |                        |            |                          |                            |                                     |              |                            |                |         |                       |
|                               |                        |            |                          |                            |                                     |              |                            |                |         |                       |
|                               |                        |            |                          |                            |                                     |              |                            |                |         |                       |
|                               |                        |            |                          |                            |                                     |              |                            |                |         |                       |
|                               |                        |            |                          |                            |                                     |              |                            |                |         |                       |
|                               |                        |            |                          |                            |                                     |              |                            |                |         |                       |
|                               |                        |            |                          |                            |                                     |              |                            |                |         |                       |
|                               |                        |            |                          |                            |                                     |              |                            |                |         |                       |
| Ctabilization                 | Δ ≤ 0                  | ) 3'       | . 20/                    | . 0.1                      | . 20/                               | . 10 m\/     | . 109/                     | . 10           | 0/      | 100 < V < 500         |
| Stabilization                 | ΔΣ                     | ).5        | ± 3%                     | ± 0.1                      | ± 3%                                | ± 10 mV      | ± 10%                      | ± 10°          | %       | 100 ≤ X ≤ 500         |
| End Purge Tin                 | ne:                    | 14         | 10                       |                            |                                     |              |                            |                |         |                       |
| Water sample                  | <b>)</b> :             |            |                          |                            |                                     |              |                            |                |         |                       |
| Time collected                |                        | 1400       |                          |                            | Total volume of                     | . •          |                            | 39.25 L        |         |                       |
| Physical appe                 |                        |            |                          |                            |                                     | Physical app | earance at samp            | _              |         |                       |
|                               | Color                  | Yello      |                          | -                          |                                     |              | •                          | Clear          |         |                       |
| Sheen/Free Pi                 | Odor<br>roduct         | Non<br>Non |                          | -                          |                                     | Sheen/F      | •                          | None<br>None   |         |                       |
|                               |                        | _          |                          | -                          |                                     | 3,1001/1     | .551154401                 | . 10110        |         |                       |
| Analytical Par<br>Container S |                        |            | tainer Tyne              | # Collect                  | ad Eigl                             | d Filtered   | Preservati                 | V0             |         | Lab                   |
| 40 ml                         | SIZE                   | Con        | tainer Type<br>Vial      | # Collect                  | eu Field                            | N Flitered   | HCL                        | ve             |         | Accutest              |
| 500 ml                        |                        |            | P                        |                            |                                     | N/Y          | None                       |                |         | Accutest              |
| 500 ml                        |                        |            | P                        |                            |                                     | N            | HNO3                       |                |         | Accutest              |

### Turbidity out of range of meter



| Date:                          | 7/22/2015          | Persor            | nnel:          | K. *                | Teitsma      | Weather:         | 80° Sui        | nny               |
|--------------------------------|--------------------|-------------------|----------------|---------------------|--------------|------------------|----------------|-------------------|
| Site Name:                     | Evor Phillips      | _<br>Pump/        | /Controller ID | -<br>Ο#: <u>Μ</u> α | onsoon       | Well #:          | ISCO-M         | IW-8              |
| Site Location:                 | Old Bridge, NJ     | Sampl             | ling Method:   | Lo                  | w-Flow       | Project #:       | 5130           | )8                |
| Monitoring Equ                 | uip. Used (include | e ID#):           |                | ·                   |              | -                |                |                   |
| Well informati                 |                    | ·                 | Well Diame     | eter Multipliers    |              | * Measuremen     | nts taken from |                   |
| Depth of Well*                 | :                  | 26.52 ft.         | 2 in. = 0.1    | ·                   |              | Х                | Top of Well C  | Casing            |
| Depth to Wate                  |                    | 22.95 ft.         | 4 in. = 0.6    | -                   |              |                  | Top of Protec  | •                 |
| Length of Wate                 |                    | ft.               | 6 in. = 1.4    | -                   |              |                  |                | -                 |
| Pump Intake D                  | Depth:             | ft.               | 8 in. = 2.6    | ວ11 gal/ft          |              |                  | (Other, Specif | fy)               |
| Well Diameter:                 | <u> </u>           | 2 in.             |                |                     | <u> </u>     |                  | <u>'</u>       |                   |
| Start Purge Tir                |                    | 1415              |                | indicate units      |              |                  |                |                   |
| Elapsed                        | Depth To           | Temperature       |                | Specific            | ORP          | Dissolved        | Turbidity      | Flow Rate         |
| Time                           | Water              | (Celsius)         | -11 (CII)      | Conductivity        | (mV)         | Oxygen (mg/l)    | _              | (ml/min)          |
| 1400                           | (ft bmp)           | 14.60             | pH (SU)        | (mS/cm)             | 102          | 1 0.22           | 000            | 250               |
| 1420                           | 23.18              | 14.60             | 14.00          | 43.5                | 102          | 0.23             | 998            | 350               |
| 1425                           | 23.23              | 13.67             | 14.00          | 39.0                | 117          | 0.00             | 461            | 350               |
| 1430                           | 23.39              | 12.39             | 14.00          | 26.4                | 104          | 0.00             | 372            | 350               |
| 1435                           | 23.19              | 15.30             | 14.00          | 34.9                | 115          | 0.00             | 396            | 350               |
| 1440                           | 23.29              | 13.74             | 14.00          | 26.1                | 120          | 0.00             | 339            | 350               |
| 1445                           | 23.39              | 12.43             | 14.00          | 24.8                | 116          | 0.00             | 341            | 350               |
| 1450                           | 23.45              | 12.24             | 14.00          | 25.6                | 121          | 0.00             | 298            | 350               |
| 1455                           | 23.25              | 13.31             | 14.00          | 34.6                | 136          | 0.00             | 253            | 300               |
| 1500                           | 23.39              | 13.28             | 14.00          | 24.6                | 130          | 0.00             | 262            | 300               |
| 1505                           | 23.39              | 13.25             | 14.00          | 24.3                | 137          | 0.00             | 205            | 300               |
| 1510                           | 23.41              | 13.13             | 14.00          | 24.7                | 135          | 0.00             | 208            | 300               |
| 1515                           | 23.43              | 13.06 14.00       |                | 25.1                | 138          | 0.00             | 191            | 300               |
|                                | <u> </u>           |                   |                |                     |              |                  |                |                   |
|                                |                    |                   |                |                     |              |                  |                |                   |
|                                |                    | <u> </u>          |                |                     |              |                  |                |                   |
|                                |                    |                   |                |                     |              |                  |                |                   |
|                                |                    |                   |                |                     |              |                  |                |                   |
|                                |                    |                   |                |                     |              |                  |                |                   |
|                                |                    | T                 |                |                     |              | 1                |                |                   |
| Stabilization                  | Δ ≤ 0.3'           | ± 3%              | ± 0.1          | ± 3%                | ± 10 mV      | ± 10%            | ± 10%          | 100 ≤ X ≤ 500     |
| End Purge Tim                  | ne· 1              | 515               |                |                     |              |                  |                |                   |
| _                              |                    | <u> </u>          |                |                     |              |                  |                |                   |
| Water sample<br>Time collected |                    |                   |                | Total volume of     | nurged water | removed:         | 19.75 L        |                   |
|                                | earance at start   | -                 |                | Total volumo c.     | . •          | pearance at samp |                |                   |
| ,                              |                    | ange/Yellow Cloud | vb             |                     | ·, •         | Color            | Yellow/Clear   |                   |
|                                | Odor No            | _                 | 2              |                     |              |                  | None           | _                 |
| Sheen/Free Pr                  | roduct No          | ne                | <u>-</u>       |                     | Sheen/f      | Free Product     | None           | <del>-</del><br>- |
| Analytical Par                 | ameters:           |                   |                |                     |              |                  |                |                   |
| Container S                    | Size Co            | ntainer Type      | # Collect      | ted Field           | d Filtered   | Preservat        | ive            | Lab               |
| 40 ml                          |                    | Vial              |                |                     | N            | HCL              |                | Accutest          |
| 500 ml                         |                    | P                 | <u> </u>       | !                   | N/Y          | None             |                | Accutest          |
| 500 ml                         |                    | Р                 | <u> </u>       |                     | N            | HNO3             |                | Accutest          |
|                                |                    |                   |                |                     |              |                  |                |                   |
|                                | <del></del>        |                   | <del> </del>   | <del></del>         |              | +                | -+             |                   |
| Notes:                         |                    |                   | <u> </u>       |                     |              |                  |                |                   |
| Notes.                         |                    |                   |                |                     |              |                  |                | <del></del>       |
| i                              |                    |                   |                |                     |              |                  |                |                   |
|                                |                    |                   |                |                     |              |                  |                |                   |
| 1                              |                    |                   | •              |                     |              |                  | •              |                   |



| Date:           | 7/22/2015          | Persor               | nnel:          | K. 7                 | Twombly         | Weather:          | 70° Sur         | nny               |
|-----------------|--------------------|----------------------|----------------|----------------------|-----------------|-------------------|-----------------|-------------------|
| Site Name:      | Evor Phillips      | Pump/                | /Controller ID | D#: 02336            | / R260581       | Well #:           | ISCO-M\         | W-9               |
| Site Location:  | Old Bridge, NJ     | Sampl                | ling Method:   | Lo                   | w-Flow          | Project #:        | 51308           | 8                 |
| Monitoring Equ  | uip. Used (include | e ID#):              |                | <del></del> -        |                 | -                 |                 |                   |
| Well informati  | •                  | ·                    | Well Diame     | eter Multipliers     |                 | * Measuremen      | its taken from  |                   |
| Depth of Well*  |                    | 24.85 ft.            | 2 in. = 0.1    | ·                    |                 | Х                 | Top of Well Ca  | asing             |
| Depth to Wate   |                    | 21.51 ft.            | 4 in. = 0.6    | •                    |                 |                   | Top of Protect  | •                 |
| Length of Wate  |                    | ft.                  | 6 in. = 1.4    | •                    |                 |                   | ]               |                   |
| Pump Intake D   | · —                | ft.                  | 8 in. = 2.6    | i11 gal/ft           |                 |                   | (Other, Specify | у)                |
| Well Diameter:  | <u> </u>           | <u>2</u> in.         |                |                      |                 |                   |                 |                   |
| Start Purge Tir | -                  | 1005                 |                | indicate units       |                 |                   |                 | _                 |
| Elapsed         | Depth To           | Temperature          |                | Specific             | ORP             | Dissolved         | Turbidity       | Flow Rate         |
| Time            | Water<br>(ft bmp)  | (Celsius)            | pH (SU)        | Conductivity (mS/cm) | (mV)            | Oxygen (mg/l)     | _               | (ml/min)          |
| 1005            | 21.85              | 12.52                | 5.74           | 0.528                | 283             | 7.09              | 746             | 400               |
| 1013            | 21.79              | 12.18                | 5.63           | 0.453                | 287             | 6.27              | 385             | 400               |
| 1018            | 21.90              | 11.49                | 5.68           | 0.439                | 287             | 5.46              | 202             | 400               |
| 1023            | 21.81              | 1188                 | 5.85           | 0.552                | 282             | 4.60              | 237             | 400               |
| 1028            | 21.90              | 11.23                | 5.95           | 0.600                | 279             | 3.39              | 268             | 400               |
| 1033            | 21.95              | 11.08                | 6.05           | 0.664                | 276             | 2.48              | 337             | 400               |
| 1038            | 22.03              | 11.08                | 6.03           | 0.595                | 275             | 1.85              | 198             | 400               |
| 1043            | 21.78              | 12.12                | 6.06           | 0.591                | 272             | 1.53              | 202             | 400               |
| 1048            | 21.77              | 12.31                | 5.93           | 0.513                | 275             | 1.29              | 118             | 400               |
| 1053            | 21.81              | 12.25                | 5.90           | 0.467                | 276             | 1.06              | 160             | 400               |
| 1058            | 21.88              | 11.57                | 6.01           | 0.585                | 271             | 0.73              | 127             | 400               |
| 1103            | 22.01              | 10.91                | 6.07           | 0.600                | 270             | 0.39              | 96.3            | 400               |
| 1108            | 21.80              | 12.17                | 6.06           | 0.582                | 268             | 0.13              | 99.3            | 400               |
| 1113            | 21.73              | 12.13                | 6.06           | 0.562                | 267             | 0.09              | 95.2            | 400               |
|                 |                    |                      |                |                      |                 |                   |                 |                   |
|                 |                    |                      |                |                      |                 |                   |                 |                   |
|                 |                    |                      |                |                      |                 |                   |                 |                   |
|                 |                    |                      |                |                      |                 |                   |                 |                   |
|                 | <u> </u>           | <u> </u>             | <u></u>        | <u>Γ</u>             | <u> </u>        | <u>T</u>          | <u> </u>        | <u> </u>          |
| Stabilization   | Δ ≤ 0.3'           | ± 3%                 | ± 0.1          | ± 3%                 | ± 10 mV         | ± 10%             | ± 10%           | 100 ≤ X ≤ 500     |
| End Purge Tim   | ne: 1'             | 113                  |                |                      |                 |                   |                 |                   |
| Water sample    |                    |                      |                |                      |                 |                   |                 |                   |
| Time collected  |                    |                      |                | Total volume of      | purged water    | removed:          | 28 L            |                   |
| Physical appe   | earance at start   | •                    |                |                      | Physical app    | pearance at samp  |                 |                   |
|                 |                    | llow, Cloudy         | _              |                      |                 |                   | Yellow Tint     | _                 |
|                 | Odor Nor           |                      | -              |                      | 01 //           | •                 | None            | -                 |
| Sheen/Free Pr   |                    | ne                   |                |                      | Sneen/i         | Free Product      | None            | -                 |
| Analytical Par  |                    | . <u> </u>           |                |                      | · <del>_</del>  |                   |                 |                   |
| Container S     | Size Cor           | ntainer Type<br>Vial | # Collect      | led Field            | d Filtered<br>N | Preservati<br>HCL | ive             | Lab               |
| 40 ml<br>500 ml |                    | P                    | <del> </del>   | <del>-   ,</del>     | N/Y             | None              |                 | Accutest Accutest |
| 500 ml          |                    | P                    | +              | +                    | N               | HNO3              |                 | Accutest          |
|                 |                    |                      | <u> </u>       | <u> </u>             |                 | †                 |                 |                   |
|                 |                    |                      |                |                      |                 |                   |                 |                   |
|                 |                    |                      | <u></u>        |                      |                 | <u> </u>          |                 |                   |
| Notes:          | Persulfate 200 m   | ng/L (no dilution)   |                |                      |                 |                   |                 |                   |
|                 |                    |                      |                |                      |                 |                   |                 |                   |
|                 |                    |                      |                |                      |                 |                   |                 |                   |
|                 |                    |                      |                |                      |                 |                   |                 |                   |



| Date:           | 7/23/2015                    | Persor       | nnel:                | K. Twomb             | bly / K. Biegert         | Weather:                 | Sunny 7               | 75°            |
|-----------------|------------------------------|--------------|----------------------|----------------------|--------------------------|--------------------------|-----------------------|----------------|
| Site Name:      | Evor Phillips                | Pump/        | /Controller ID       | )#: <u>M</u> c       | onsoon                   | Well #:                  | IW1-BT                | Γ-2            |
| Site Location:  | Old Bridge, NJ               | Sampl        | ling Method:         | Lo                   | w-Flow                   | Project #:               | 51308                 | 8              |
| Monitoring Equ  | uip. Used (include           | ID#):        |                      |                      |                          |                          |                       |                |
| Well informat   | tion:                        |              | Well Diame           | eter Multipliers     |                          | * Measuremen             | its taken from        |                |
| Depth of Well*  | *:                           | 36.59 ft.    | 2 in. = 0.1          | 63 gal/ft            |                          | Х                        | Top of Well Ca        | asing          |
| Depth to Wate   | er*:                         | 25.25 ft.    | 4 in. = 0.653 gal/ft |                      | Top of Protective Casing |                          |                       |                |
| Length of Wate  |                              | ft.          | 6 in. = 1.469 gal/ft |                      |                          |                          |                       |                |
| Pump Intake D   | Depth:                       | ft.          | 8 in. = 2.6          | 11 gal/ft            |                          |                          | (Other, Specify       | y)             |
| Well Diameter   | : <u> </u>                   | <u>2</u> in. |                      |                      | <u></u>                  |                          |                       |                |
| Start Purge Tir |                              | 0955         |                      | indicate units       |                          |                          |                       |                |
| Elapsed         | Depth To                     | Temperature  | ŀ                    | Specific             | ORP                      | Dissolved                | Turbidity             | Flow Rate      |
| Time            | Water<br>(ft bmp)            | (Celsius)    | pH (SU)              | Conductivity (mS/cm) | (mV)                     | Oxygen (mg/l)            | _                     | (ml/min)       |
| 0957            | 22.37                        | 13.74        | 14.00                | 37.0                 | 336                      | 0.00                     | 999                   | 350            |
| 1002            | 25.45                        | 12.02        | 14.00                | 14.8                 | 276                      | 0.00                     | 999                   | 350            |
| 1002            | 25.42                        | 11.88        | 14.00                | 12.7                 | 229                      | 0.00                     | 999                   | 350            |
| 1012            | 25.42                        | 11.79        | 14.00                | 11.1                 | 184                      | 0.00                     | 999                   | 350            |
| 1012            | 25.41                        | 11.79        | 14.00                | 10.5                 | 170                      | 0.00                     | 999                   | 350            |
| 1017            | 25.41                        | 11.76        | 14.00                | 9.90                 | 160                      | 0.00                     | 999                   | 350            |
| 1022            | 25.41                        | 11.76        | 14.00                | 9.90                 | 150                      | 0.00                     | 999                   | 350            |
| 1027            | 25.42                        | 11.65        | 14.00                | 9.36<br>8.91         | 141                      | 0.00                     | 999                   | 350            |
|                 |                              | 11.84        |                      |                      | 137                      | 0.00                     | 999                   |                |
| 1037            | 25.40                        |              | 14.00                | 8.74                 | t -                      |                          |                       | 350            |
| 1042            | 25.41                        | 11.86        | 14.00                | 8.58                 | 132                      | 0.00                     | 999                   | 350            |
| 1047            | 25.41                        | 11.88        | 14.00                | 8.28                 | 125                      | 0.00                     | 999                   | 350            |
| 1052            | 25.42                        | 11.74        | 14.00                | 8.14                 | 122                      | 0.00                     | 999                   | 350            |
| 1057            | 25.41                        | 11.66        | 14.00                | 7.91                 | 118                      | 0.00                     | 999                   | 350            |
| 1102            | 25.41                        | 11.68        | 14.00                | 7.77                 | 114                      | 0.00                     | 999                   | 350            |
| 1107            | 25.41                        | 11.74        | 14.00                | 7.69                 | 111                      | 0.00                     | 999                   | 350            |
| 1112            | 25.41                        | 11.84        | 14.00                | 7.60                 | 109                      | 0.00                     | 999                   | 350            |
| 1117            | 25.41                        | 11.97        | 13.95                | 7.57                 | 110                      | 0.00                     | 999                   | 350            |
| 1122            | 25.41                        | 11.97        | 13.93                | 7.54                 | 112                      | 0.00                     | 999                   | 350            |
| Stabilization   | Δ ≤ 0.3'                     | ± 3%         | ± 0.1                | ± 3%                 | ± 10 mV                  | ± 10%                    | ± 10%                 | 100 ≤ X ≤ 500  |
|                 |                              |              |                      |                      |                          |                          |                       | 200 = 1111 = 1 |
| End Purge Tim   | ne: 11                       | 40           |                      |                      |                          |                          |                       |                |
| Water sample    |                              |              |                      |                      |                          |                          |                       |                |
| Time collected  |                              |              |                      | Total volume of      |                          |                          | 31.5 L                | <del></del>    |
| Physical appe   | earance at start  Color Brov | wn/Cloudy    |                      |                      | Pnysicai appe            | earance at samp<br>Color | pling<br>Brown/Cloudy | ,              |
|                 | Odor Non                     |              | -                    |                      |                          | Odor                     | None Brown/Cloudy     | -              |
| Sheen/Free Pr   |                              |              | -                    |                      | Sheen/F                  | Free Product             | None                  | -              |
| Analytical Par  |                              |              | <del>-</del>         |                      |                          |                          |                       | -              |
| Container S     |                              | ntainer Type | # Collect            | ted Field            | d Filtered               | Preservati               | ive                   | Lab            |
| 40 ml           |                              | Vial         |                      |                      | N                        | HCL                      |                       | Accutest       |
| 500 ml          | <u> </u>                     | Р            | †                    |                      | N/Y                      | None                     |                       | Accutest       |
| 500 ml          |                              | Р            |                      |                      | N                        | HNO3                     |                       | Accutest       |
|                 |                              |              |                      |                      |                          |                          |                       |                |
|                 |                              |              |                      |                      |                          | <b></b>                  |                       |                |
|                 | 112/1405                     |              |                      |                      |                          | <u> </u>                 |                       |                |
| Notes:          | MS/MSD coll                  | ected        |                      |                      |                          |                          |                       |                |
|                 |                              |              |                      |                      |                          |                          |                       |                |
|                 |                              |              |                      |                      |                          |                          |                       |                |
|                 |                              |              |                      |                      |                          |                          |                       | <del></del>    |

### O'BRIEN 5 GERE **Low Flow Ground Water Sampling Log** Date: 7/22/2015 Personnel: K. Biegert Weather: Clear, 70 MW-10S Site Name: Evor Phillips Pump/Controller ID#: Monsoon Well #: Sampling Method: 51308 Site Location: Old Bridge, NJ Low-Flow Project #: Monitoring Equip. Used (include ID#): Well information: Well Diameter Multipliers Measurements taken from Depth of Well\*: 31.30 ft. 2 in. = 0.163 gal/ft Top of Well Casing 19.46 ft. Depth to Water\*: 4 in. = 0.653 gal/ftTop of Protective Casing Length of Water Column: 6 in. = 1.469 gal/ft ft. 8 in. = 2.611 gal/ft Pump Intake Depth: ft. (Other, Specify) 2 in. Well Diameter: Start Purge Time: 1007 indicate units Depth To Specific **Elapsed Temperature** ORP Dissolved **Turbidity** Flow Rate Water Conductivity Time (Celsius) (mV) Oxygen (mg/l) (NTU) (ml/min) (ft bmp) pH (SU) (mS/cm) 400 1037 19.50 12.45 5.95 0.200 253 0.00 770 0.00 0.229 400 1042 19.50 12.17 5.97 271 667 1047 19.50 13.40 5.97 0.243 281 0.00 210 400 1052 19.50 13.85 6.00 0.252 281 0.00 144 400 1057 19.50 13.04 5.96 0.241 288 0.00 99.7 400 1102 19.50 13.31 5.94 0.233 290 0.00 94.4 400 1107 19.50 13.09 6.00 0.229 289 0.00 91.7 400 1112 19.50 13.12 5.98 0.232 291 0.00 48.7 400 1117 19.50 13.07 6.00 0.236 292 0.00 47.6 400 1122 19.50 13.15 6.00 0.232 292 0.00 48.2 400 Stabilization $\Delta \leq 0.3$ ± 3% $\pm 0.1$ ± 3% ± 10 mV ± 10% ± 10% $100 \le X \le 500$ End Purge Time: 1135 Water sample: Time collected: Total volume of purged water removed: 1125 20 L Physical appearance at start Physical appearance at sampling Color Yellow Tint Yellow Color Odor None Odor None Sheen/Free Product None Sheen/Free Product None **Analytical Parameters:** Container Size Container Type # Collected Field Filtered Preservative Lab 40 ml Vial Ν HCL Accutest 500 ml Ρ N/YNone Accutest Р 500 ml Ν HNO3 Accutest

### Horiba in sun

Sample: 2RND1-MW-10S-072215

### O'BRIEN 5 GERE Low Flow Ground Water Sampling Log Date: 7/22/2015 Personnel: K. Biegert / K. Teitsma Weather: Clear, 70° Pump/Controller ID#: Well #: MW-14SS Site Name: Evor Phillips Monsoon Sampling Method: Site Location: Old Bridge, NJ Low-Flow Project #: 51308 Monitoring Equip. Used (include ID#): Well information: Well Diameter Multipliers Measurements taken from Depth of Well\*: 17.45 ft. 2 in. = 0.163 gal/ft Χ Top of Well Casing 5.95 ft. Depth to Water\*: 4 in. = 0.653 gal/ftTop of Protective Casing Length of Water Column: 6 in. = 1.469 gal/ft ft. 8 in. = 2.611 gal/ft (Other, Specify) Pump Intake Depth: ft. 2 in. Well Diameter: Start Purge Time: 0840 indicate units Depth To Specific **Elapsed Temperature** ORP Dissolved **Turbidity** Flow Rate Water Conductivity Time (Celsius) (mV) Oxygen (mg/l) (NTU) (ml/min) (mS/cm) (ft bmp) pH (SU) 0841 5.99 12.19 6.60 1.35 245 2.08 49.2 400 1.32 0.83 400 0846 5.99 12.16 6.60 238 50.1 0851 5.99 12.10 6.60 1.32 235 0.78 51.5 400 0856 5.99 12.27 6.58 1.31 231 0.49 44.4 400 0901 5.99 12.19 6.57 1.31 228 0.32 42.9 400 0906 5.99 12.07 6.56 1.30 227 0.32 37.9 400 0911 5.99 12.07 6.55 1.30 226 0.30 39.4 400 Stabilization $\Delta \leq 0.3$ ± 3% $\pm 0.1$ ± 3% ± 10 mV ± 10% ± 10% $100 \le X \le 500$ End Purge Time: 0925 Water sample: Time collected: Total volume of purged water removed: 0915 14 L Physical appearance at start Physical appearance at sampling Color Clear Clear Color Odor None Odor None Sheen/Free Product None Sheen/Free Product None **Analytical Parameters:**

| Container Size | Container Type | # Collected | Field Filtered | Preservative | Lab      |
|----------------|----------------|-------------|----------------|--------------|----------|
| 40 ml          | Vial           |             | N              | HCL          | Accutest |
| 500 ml         | Р              |             | N/Y            | None         | Accutest |
| 500 ml         | Р              |             | N              | HNO3         | Accutest |
|                |                |             |                |              |          |
|                |                |             |                |              |          |
|                |                |             |                |              |          |

Notes: Pump set to 10' bgs

Sample: 2RND1-MW-14SS-072215

### O'BRIEN 5 GERE **Low Flow Ground Water Sampling Log** Date: 7/22/2015 Personnel: K. Biegert Weather: Sunny, 70° Pump/Controller ID#: Well #: MW-14SD Site Name: Evor Phillips Monsoon Sampling Method: 51308 Site Location: Old Bridge, NJ Low-Flow Project #: Monitoring Equip. Used (include ID#): Well information: Well Diameter Multipliers Measurements taken from Depth of Well\*: 17.45 ft. 2 in. = 0.163 gal/ft Χ Top of Well Casing 5.95 ft. Depth to Water\*: 4 in. = 0.653 gal/ftTop of Protective Casing Length of Water Column: 6 in. = 1.469 gal/ft ft. 8 in. = 2.611 gal/ft Pump Intake Depth: ft. (Other, Specify) 2 in. Well Diameter: Start Purge Time: 0918 indicate units Depth To Specific **Elapsed** Temperature ORP Dissolved **Turbidity** Flow Rate Water Conductivity Time (Celsius) (mV) Oxygen (mg/l) (NTU) (ml/min) (mS/cm) (ft bmp) pH (SU) 0920 5.96 11.23 6.70 1.16 212 0.00 58.2 400 11.05 0.00 49.3 400 0925 5.98 6.65 1.16 208 0928 5.98 11.10 6.65 1.15 206 0.00 43.8 400 0933 5.98 11.31 6.64 1.14 206 0.00 41.0 400 0938 5.98 11.46 6.64 1.13 207 0.00 37.4 400 Stabilization $\Delta \leq 0.3$ ± 3% $\pm 0.1$ ± 3% ± 10 mV ± 10% ± 10% $100 \le X \le 500$ End Purge Time: 0945 Water sample: Time collected: Total volume of purged water removed: 0940 10 L Physical appearance at start Physical appearance at sampling Color Clear Clear Color Odor None Odor None Sheen/Free Product None Sheen/Free Product None **Analytical Parameters:** Container Size Container Type # Collected Field Filtered Preservative Lab 40 ml HCL Vial Ν Accutest 500 ml Ρ N/YNone Accutest Р 500 ml Ν HNO3 Accutest

Pump set to 15' hgs 2RND1-MW-14SD-072215

### O'BRIEN 5 GERE **Low Flow Ground Water Sampling Log** Date: 9/16/2015 Personnel: K. Biegert Weather: Clear, 70 Pump/Controller ID#: ISCO-MW-2 Site Name: Evor Phillips Bailer Well #: Sampling Method: 51308 Site Location: Old Bridge, NJ Low-Flow Project #: Monitoring Equip. Used (include ID#): 14257 U-52 Well information: Well Diameter Multipliers Measurements taken from Depth of Well\*: 23.55 ft. 2 in. = 0.163 gal/ft Top of Well Casing 22.00 ft. Depth to Water\*: 4 in. = 0.653 gal/ftTop of Protective Casing Length of Water Column: 1.55 ft. 6 in. = 1.469 gal/ft 8 in. = 2.611 gal/ft (Other, Specify) Pump Intake Depth: ft. 2 in. Well Diameter: Start Purge Time: 0812 indicate units Depth To Specific **Elapsed Temperature** ORP Dissolved **Turbidity** Flow Rate Water Conductivity Time (Celsius) (mV) Oxygen (mg/l) (NTU) (ml/min) (mS/cm) (ft bmp) pH (SU) Well Volume 22.98 10.46 24.7 110 6.75 999 2 Well Volume 23.02 999 10.48 24.0 128 1.43 3 Well Volume 23.09 10.48 24.7 158 1.48 999 Stabilization $\Delta \leq 0.3$ ± 3% $\pm 0.1$ ± 3% ± 10 mV ± 10% ± 10% $100 \le X \le 500$ End Purge Time: 1125 Water sample: Time collected: Total volume of purged water removed: 1120 0.75 gal Physical appearance at start Physical appearance at sampling Color Yellow, Cloudy Yellow, Cloudy Color Odor None Odor None Sheen/Free Product None Sheen/Free Product None **Analytical Parameters:** Container Size Container Type # Collected Field Filtered Preservative Lab 40 ml Vial Ν HCL Accutest 500 ml Ρ 2 N/YNone Accutest Р 500 ml 1 Ν HNO3 Accutest

### i:\50\projects\GE\33961\n&d\field forms\microlog.xls

Well Volume = 0.25 gal

Unable to pump, bail 3 well volumes



|                                                         | BITIEIN                       | OGERE                    |                      | Low Flow Ground Water Sampling Log  |             |                                                 |                               |                       |  |
|---------------------------------------------------------|-------------------------------|--------------------------|----------------------|-------------------------------------|-------------|-------------------------------------------------|-------------------------------|-----------------------|--|
| Date:                                                   | 9/16/2015                     | Persor                   | nnel:                | D. M                                | ongiardo    | Weather:                                        | Sunny 7                       | ′0's                  |  |
| Site Name:                                              | Evor Phillips                 | Pump/                    | Controller ID        | D#: Mc                              | onsoon      | Well #:                                         | ISCO-M                        | W-3                   |  |
| Site Location:                                          | Old Bridge, NJ                | _<br>Sampl               | ing Method:          | Lo                                  | w-Flow      | Project #:                                      | 51308                         | <del></del>           |  |
|                                                         | ıip. Used (includ             | <del>-</del>             | •                    |                                     |             | - ′                                             |                               |                       |  |
| Well informati                                          |                               |                          |                      | eter Multipliers                    |             | * Measuremen                                    | nts taken from                |                       |  |
| Depth of Well*                                          |                               | 29.79 ft.                |                      | in. = 0.163 gal/ft                  |             | * Measurements taken from  X Top of Well Casing |                               |                       |  |
| Depth to Wate                                           |                               | 25.38 ft.                | 4 in. = 0.6          | ŭ                                   |             |                                                 | Top of Protect                | -                     |  |
| Length of Wate                                          |                               | ft.                      | 6 in. = 1.469 gal/ft |                                     |             |                                                 |                               | g                     |  |
| Pump Intake D                                           |                               | ft.                      | 8 in. = 2.6          | •                                   |             |                                                 | (Other, Specif                | y)                    |  |
| Well Diameter:                                          | ·                             | 2 in.                    |                      |                                     |             | •                                               | •                             |                       |  |
| Start Purge Tir                                         | ne:                           | 0945                     | •                    | indicate units                      |             |                                                 |                               |                       |  |
| Elapsed<br>Time                                         | Depth To<br>Water<br>(ft bmp) | Temperature<br>(Celsius) | pH (SU)              | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV) | Dissolved<br>Oxygen (mg/l)                      | Turbidity<br>(NTU)            | Flow Rate<br>(ml/min) |  |
| 0950                                                    | 25.55                         | 15.67                    | 12.89                | 7.75                                | 38          | 0.00                                            | 999                           | 400                   |  |
| 0955                                                    | 25.55                         | 15.55                    | 12.82                | 7.04                                | 45          | 0.00                                            | 999                           | 400                   |  |
| 1000                                                    | 25.55                         | 15.71                    | 12.82                | 7.00                                | 47          | 0.00                                            | 999                           | 400                   |  |
| 1005                                                    | 25.55                         | 15.76                    | 12.87                | 7.40                                | 48          | 0.00                                            | 999                           | 400                   |  |
| 1010                                                    | 25.55                         | 15.81                    | 12.92                | 7.84                                | 52          | 0.00                                            | 999                           | 400                   |  |
| 1015                                                    | 25.55                         | 15.79                    | 12.97                | 8.54                                | 59          | 0.00                                            | 999                           | 400                   |  |
| 1020                                                    | 25.55                         | 15.71                    | 13.01                | 9.15                                | 64          | 0.00                                            | 999                           | 400                   |  |
| 1025                                                    | 25.55                         | 15.87                    | 13.08                | 9.95                                | 72          | 0.00                                            | 999                           | 400                   |  |
| 1030                                                    | 25.55                         | 15.83                    | 13.08                | 9.94                                | 74          | 0.00                                            | 999                           | 400                   |  |
| 1035                                                    | 25.55                         | 15.88                    | 13.07                | 9.68                                | 74          | 0.00                                            | 999                           | 400                   |  |
| 1040                                                    | 25.55                         | 15.84                    | 13.08                | 9.79                                | 76          | 0.00                                            | 999                           | 400                   |  |
| 1045                                                    | 25.55                         | 15.86                    | 13.10                | 10.40                               | 79          | 0.00                                            | 999                           | 400                   |  |
| 1050                                                    | 25.55                         | 15.90                    | 13.11                | 10.60                               | 77          | 0.00                                            | 999                           | 400                   |  |
| 1055                                                    | 25.55                         | 16.08                    | 13.11                | 10.40                               | 84          | 0.00                                            | 999                           | 400                   |  |
| 1100                                                    | 25.55                         | 16.56                    | 13.11                | 10.60                               | 81          | 0.00                                            | 999                           | 400                   |  |
| 1105                                                    | 25.55                         | 16.42                    | 13.09                | 9.93                                | 79          | 0.00                                            | 999                           | 400                   |  |
| 1110                                                    | 25.55                         | 16.45                    | 13.08                | 9.92                                | 78          | 0.00                                            | 999                           | 400                   |  |
| 1115                                                    | 25.55                         | 16.34                    | 13.08                | 9.96                                | 78          | 0.00                                            | 999                           | 400                   |  |
| 1120                                                    | 25.55                         | 16.34                    | 13.10                | 10.00                               | 77          | 0.00                                            | 999                           | 400                   |  |
| Stabilization                                           | Δ ≤ 0.3'                      | ± 3%                     | ± 0.1                | ± 3%                                | ± 10 mV     | ± 10%                                           | ± 10%                         | 100 ≤ X ≤ 500         |  |
| End Purge Tim Water sample Time collected Physical appe | : 1125<br>earance at start    | 125  oudy Brownish Yel   | low                  | Total volume of                     |             | removed:<br>earance at sam<br>Color             | 38 L<br>pling<br>Cloudy Brown | ish Yellow            |  |
| Sheen/Free Pr                                           |                               | one                      | -<br>-               |                                     | Sheen/F     | Odor<br>Free Product                            | None<br>None                  | -<br>-                |  |
| Analytical Par                                          | ameters:                      |                          |                      |                                     |             |                                                 |                               |                       |  |
| Container S                                             | Size Co                       | ontainer Type            | # Collect            | ed Field                            | d Filtered  | Preservat                                       | ive                           | Lab                   |  |
| 40 ml                                                   |                               | Vial                     | 3                    |                                     | N           | HCL                                             |                               | Accutest              |  |
| 500 ml                                                  |                               | <u>P</u>                 | 2                    |                                     | N/Y         | None                                            |                               | Accutest              |  |
| 500 ml                                                  |                               | Р                        | 1                    |                                     | N           | HNO3                                            |                               | Accutest              |  |
|                                                         |                               |                          |                      |                                     |             |                                                 |                               |                       |  |
|                                                         |                               |                          |                      |                                     |             |                                                 |                               |                       |  |
| Notes:                                                  | l                             |                          | 1                    | <u> </u>                            |             | L                                               |                               |                       |  |
|                                                         |                               |                          |                      |                                     |             |                                                 |                               |                       |  |

|                 | BRIEN                    | 8 GERE                 |                | Low Fl                  | low Grou     | nd Water S                 | ampling                        | Log                   |  |
|-----------------|--------------------------|------------------------|----------------|-------------------------|--------------|----------------------------|--------------------------------|-----------------------|--|
| Date:           | 9/15/2015                | Perso                  | nnel:          | D. M                    | longiardo    | Weather:                   | Sunny 6                        | 60's                  |  |
| Site Name:      | Evor Phillips            | <del></del>            | /Controller ID |                         | onsoon       | Well #:                    | ISCO-M\                        |                       |  |
|                 | Old Bridge, N            |                        | ling Method:   |                         | w-Flow       | Project #:                 | 51308                          |                       |  |
|                 | uip. Used (includ        |                        | -              |                         | VV-1 10 VV   | _ 1 10,601 #.              | 31300                          | <u> </u>              |  |
| Well informat   |                          | de 1D#). 19923         |                | tor Multipliana         | <u> </u>     | * Measurements taken from  |                                |                       |  |
| Depth of Well*  |                          | 19.85 ft.              | 2 in. = 0.1    | eter Multipliers        |              | X                          | Top of Well Ca                 | acina                 |  |
| Depth to Wate   | _                        | 18.81 ft.              | 4 in. = 0.1    | -                       |              | ^                          | Top of Well Co                 | -                     |  |
| Length of Wat   |                          | 1.02 ft.               | 6 in. = 1.4    | -                       |              |                            | Top of Frotoot                 | ave easing            |  |
| Pump Intake [   |                          | ft.                    | 8 in. = 2.6    | -                       |              |                            | (Other, Specify                | y)                    |  |
| Well Diameter   | : <u> </u>               | 2 in.                  |                |                         |              |                            | •                              |                       |  |
| Start Purge Ti  | me:                      | 0907                   |                | in dia ata unita        | •            |                            |                                |                       |  |
|                 | Depth To                 |                        |                | indicate units Specific |              |                            |                                | Ī                     |  |
| Elapsed<br>Time | Water<br>(ft bmp)        | Temperature (Celsius)  | pH (SU)        | Conductivity<br>(mS/cm) | ORP<br>(mV)  | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU)             | Flow Rate<br>(ml/min) |  |
| 0956            | -                        | 16.50                  | 4.05           | 0.174                   | 389          | 3.92                       | 0.0                            | -                     |  |
| 1014            | -                        | 16.56                  | 4.13           | 0.174                   | 305          | 3.41                       | 298                            | -                     |  |
|                 |                          |                        |                |                         |              |                            |                                |                       |  |
|                 |                          |                        |                |                         |              |                            |                                |                       |  |
|                 |                          |                        |                |                         |              |                            |                                |                       |  |
|                 |                          | +                      |                |                         |              |                            |                                |                       |  |
|                 |                          |                        |                |                         |              |                            |                                |                       |  |
|                 |                          |                        |                |                         |              |                            |                                |                       |  |
|                 |                          | +                      |                |                         |              |                            |                                |                       |  |
|                 |                          | +                      |                |                         |              |                            |                                |                       |  |
|                 |                          | +                      |                |                         |              |                            |                                |                       |  |
|                 |                          |                        |                |                         |              |                            |                                |                       |  |
|                 |                          |                        |                |                         |              |                            |                                |                       |  |
|                 |                          |                        |                |                         |              |                            |                                |                       |  |
|                 |                          |                        |                |                         |              |                            |                                |                       |  |
|                 |                          |                        |                |                         |              |                            |                                |                       |  |
|                 |                          |                        |                |                         |              |                            |                                |                       |  |
|                 | 4 4 0 21                 | 1 00/                  |                | 221                     | 40.14        | 1 400/                     | 100/                           | 1 400                 |  |
| Stabilization   | Δ ≤ 0.3'                 | ± 3%                   | ± 0.1          | ± 3%                    | ± 10 mV      | ± 10%                      | ± 10%                          | 100 ≤ X ≤ 500         |  |
| End Purge Tin   | ne:                      | 1023                   |                |                         |              |                            |                                |                       |  |
| Water sample    | <b>)</b> :               |                        |                |                         |              |                            |                                |                       |  |
| Time collected  |                          |                        |                | Total volume of         |              |                            | 0.75 gal                       |                       |  |
| Physical appe   | earance at start Color C |                        |                |                         | Physical app | pearance at samp<br>Color  | <b>pling</b><br>Clear/Yellowis | .h                    |  |
|                 |                          | loudy/Yellowish<br>one | =              |                         |              | Odor                       | None                           | <u></u>               |  |
| Sheen/Free Pi   |                          | one                    | -              |                         | Sheen/l      | Free Product               | None                           | -                     |  |
| Analytical Pa   | rameters:                |                        |                |                         |              |                            |                                | -                     |  |
| Container       |                          | ontainer Type          | # Collect      | ed Field                | d Filtered   | Preservat                  | ive                            | Lab                   |  |
| 40 ml           |                          | Vial                   | 3              |                         | N            | HCL                        |                                | Accutest              |  |
| 500 ml          |                          | Р                      | 2              |                         | N / Y        | None                       |                                | Accutest              |  |
| 500 ml          |                          | Р                      | 1              |                         | N            | HNO3                       |                                | Accutest              |  |
|                 |                          |                        |                |                         |              |                            |                                |                       |  |
|                 |                          |                        |                |                         |              | 1                          | <del>-  </del>                 |                       |  |
| Notes:          |                          | low top of pump        |                |                         |              | <u> </u>                   |                                |                       |  |
|                 |                          | was only capable       |                | ourge                   |              |                            |                                |                       |  |
| ĺ               | Well volume =            | 0.169 gal, 3 well vo   | ol             |                         |              |                            |                                |                       |  |

| О ОВ                                                   | RIEN                          | GERE                     |               | Low FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ow Grou     | nd Water S                   | ampling             | Log                                            |  |
|--------------------------------------------------------|-------------------------------|--------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------|---------------------|------------------------------------------------|--|
| Date:                                                  | 9/15/2015                     | Persor                   | nnel:         | K. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Biegert     | Weather:                     | Clear               | 30°                                            |  |
| Site Name:                                             | Evor Phillips                 | Pump/                    | Controller ID |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsoon       | -<br>Well #:                 | ISCO-M              |                                                |  |
| Site Location: O                                       |                               | •                        | ing Method:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | w-Flow      | Project #:                   |                     |                                                |  |
| Monitoring Equip.                                      |                               | •                        | ŭ             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | _                            |                     | <u>-                                      </u> |  |
| Well information                                       | •                             | 1011). 11201             |               | eter Multipliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | * Measuremen                 | ts taken from       |                                                |  |
| Depth of Well*:                                        | •                             | 32.60 ft.                | 2 in. = 0.1   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | X                            | Top of Well C       | Casing                                         |  |
| Depth to Water*:                                       |                               | 23.05 ft.                | 4 in. = 0.6   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                              | Top of Protect      | •                                              |  |
| Length of Water C                                      | Column:                       | ft.                      | 6 in. = 1.4   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                              | ·                   | · ·                                            |  |
| Pump Intake Dept                                       | th:                           | ft.                      | 8 in. = 2.6   | 11 gal/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | fy)                          |                     |                                                |  |
| Well Diameter:                                         |                               | <u>2</u> in.             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                              |                     |                                                |  |
| Start Purge Time:                                      |                               |                          |               | indicate units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                              |                     |                                                |  |
| Elapsed<br>Time                                        | Depth To<br>Water<br>(ft bmp) | Temperature<br>(Celsius) | pH (SU)       | Specific<br>Conductivity<br>(mS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ORP<br>(mV) | Dissolved<br>Oxygen (mg/l)   | Turbidity<br>(NTU)  | Flow Rate<br>(ml/min)                          |  |
| 1157                                                   | 23.05                         | 19.82                    | 5.83          | 0.421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80          | 0.98                         | 999                 | 400                                            |  |
| 1202                                                   | 23.05                         | 17.07                    | 5.51          | 0.434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65          | 0.00                         | 999                 | 400                                            |  |
| 1207                                                   | 23.05                         | 14.33                    | 5.37          | 0.461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74          | 0.00                         | 653                 | 400                                            |  |
| 1212                                                   | 23.05                         | 15.02                    | 5.36          | 0.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74          | 0.00                         | 209                 | 400                                            |  |
| 1217                                                   | 23.05                         | 15.35                    | 5.36          | 0.458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74          | 0.00                         | 110                 | 400                                            |  |
| 1222                                                   | 23.05                         | 15.20                    | 5.35          | 0.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76          | 0.00                         | 35.8                | 400                                            |  |
| 1227<br>1232                                           | 23.05                         | 15.28<br>15.38           | 5.35<br>5.31  | 0.465<br>0.465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76<br>78    | 0.00                         | 38.2<br>16.2        | 400<br>400                                     |  |
|                                                        | olor Yell                     | ow                       | ± 0.1         | ± 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -           | earance at samp<br>Color     | Clear               | 100 ≤ X ≤ 500                                  |  |
| Sheen/Free Produ<br>Analytical Param<br>Container Size | eters:                        | tainer Type              | # Collect     | ed Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Filtered    | Odor Free Product  Preservat | None<br>None<br>ive | Lab                                            |  |
| 40 ml                                                  |                               | Vial<br>P                | 9             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N<br>N / Y  | HCL<br>None                  |                     | Accutest<br>Accutest                           |  |
| 000 1111                                               |                               | <br>                     |               | 6 N/Y None // |             |                              |                     |                                                |  |

### i:\50\projects\GE\33961\n&d\field forms\microlog.xls

MS/MSD collected

| <b>6</b> 0                       | BRIEN                         | N & GERE                 |                                              | Low FI                              | ow Groui     | nd Water S                 | amplir          | ng Log                        |  |  |
|----------------------------------|-------------------------------|--------------------------|----------------------------------------------|-------------------------------------|--------------|----------------------------|-----------------|-------------------------------|--|--|
| Date:                            | 9/15/2015                     | 5 Persor                 | nnel:                                        | D. M                                | ongiardo     | Weather:                   | Cle             | ear, 80                       |  |  |
| Site Name:                       | Evor Phillip                  | os Pump/                 | Controller ID                                |                                     | nsoon        | Well #:                    |                 | O-MW-7                        |  |  |
| Site Location:                   |                               | <del></del>              | ing Method:                                  |                                     | w-Flow       | Project #:                 | 51308           |                               |  |  |
|                                  |                               | <del></del>              | Ü                                            |                                     | /V-1 10 W    | 1 10,601 #.                |                 | 71300                         |  |  |
| Monitoring Equ                   |                               | lude ID#): 19925         |                                              | ton Multipliana                     |              | * 14                       | 4- 4-l fu       |                               |  |  |
| Well information  Depth of Well* |                               | 22.60.#                  |                                              | eter Multipliers                    |              | * Measuremen               | 1               |                               |  |  |
| Depth to Wate                    |                               | 22.60 ft.<br>19.95 ft.   | 2 in. = 0.1<br>4 in. = 0.6                   | •                                   |              | X                          |                 | ell Casing<br>otective Casing |  |  |
| Length of Wate                   |                               | 15.55 ft.                | 6 in. = 1.4                                  | •                                   |              |                            | TOP OF I        | otconve dasing                |  |  |
| Pump Intake D                    |                               | ft.                      | 8 in. = 2.6                                  | •                                   |              |                            | (Other, S       | pecify)                       |  |  |
| Well Diameter:                   |                               |                          |                                              |                                     |              |                            |                 | • •                           |  |  |
| Start Purge Tir                  | me:                           | 1259                     | <u>.                                    </u> | indicate units                      |              |                            |                 |                               |  |  |
| Elapsed<br>Time                  | Depth To<br>Water<br>(ft bmp) | Temperature (Celsius)    | pH (SU)                                      | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)  | Dissolved<br>Oxygen (mg/l) | Turbidi<br>(NTU | -                             |  |  |
| 1300                             | 19.95                         | 18.73                    | 10.16                                        | 11.80                               | 221          | 2.43                       | 999             | 400                           |  |  |
| 1305                             | 20.78                         | 17.27                    | 7.94                                         | 4.71                                | 288          | 0.30                       | 999             | 300                           |  |  |
| 1310                             | 20.92                         | 17.27                    | 6.86                                         | 4.81                                | 332          | 0.00                       | 999             | 400                           |  |  |
| 1315                             | 20.84                         | 17.21                    | 6.67                                         | 4.82                                | 348          | 0.00                       | 999             | 400                           |  |  |
| 1320                             | 21.16                         | 16.56                    | 7.49                                         | 7.74                                | 336          | 0.00                       | 999             | 400                           |  |  |
| 1325                             | 21.32                         | 17.30                    | 8.29                                         | 7.81                                | 311          | 0.00                       | 999             | 400                           |  |  |
| 1330                             | 21.36                         | 17.56                    | 7.52                                         | 6.80                                | 309          | 0.45                       | 665             | 400                           |  |  |
| 1335                             | 21.38                         | 17.54                    | 7.18                                         | 6.34                                | 339          | 0.00                       | 342             | 400                           |  |  |
| 1340                             | 21.39                         | 17.57                    | 7.10                                         | 6.07                                | 353          | 0.00                       | 256             | 400                           |  |  |
|                                  |                               |                          | Pυ                                           | ımp Cha                             | nge          |                            |                 |                               |  |  |
| 1400                             | 21.68                         | 17.01                    | 7.21                                         | 6.28                                | 319          | 0.00                       | 999             | 400                           |  |  |
| 1405                             | 21.05                         | 17.01                    | 7.28                                         | 6.24                                | 325          | 0.00                       | 999             | 400                           |  |  |
| 1410                             | 20.65                         | 17.06                    | 7.53                                         | 6.90                                | 324          | 0.00                       | 999             | 400                           |  |  |
| 1415                             | 20.55                         | 17.11                    | 7.46                                         | 6.91                                | 324          | 0.00                       | 931             | 400                           |  |  |
| 1420                             | 20.56                         | 17.21                    | 7.99                                         | 6.63                                | 325          | 0.00                       | 652             | 400                           |  |  |
| 1425                             | 20.56                         | 17.58                    | 8.06                                         | 7.18                                | 328          | 0.00                       | 999             | 400                           |  |  |
| 1430                             | 20.58                         | 17.59                    | 8.15                                         | 7.20                                | 320          | 0.00                       | 800             | 400                           |  |  |
| Stabilization                    | Δ ≤ 0.3'                      | ± 3%                     | ± 0.1                                        | ± 3%                                | ± 10 mV      | ± 10%                      | ± 10%           | 6 100 ≤ X ≤ 500               |  |  |
| End Purge Tim                    | ne:                           | 1435                     |                                              |                                     |              |                            |                 |                               |  |  |
| Water sample                     |                               |                          |                                              |                                     |              |                            |                 |                               |  |  |
| Time collected                   | -                             |                          |                                              | Total volume of                     |              |                            | 31.5 L          |                               |  |  |
| Physical appe                    |                               |                          | h.,                                          |                                     | Physical app | earance at samp<br>Color   | •               | allow/Cloudy                  |  |  |
|                                  |                               | Orange/Yellow/Cloud None | iy                                           |                                     |              | Odor                       | None            | ellow/Cloudy                  |  |  |
| Sheen/Free Pr                    |                               | None                     | •                                            |                                     | Sheen/F      | ree Product                | None            |                               |  |  |
| Analytical Par                   |                               |                          |                                              |                                     |              |                            |                 |                               |  |  |
| Container S                      | Size                          | Container Type           | # Collect                                    | ed Field                            | Filtered     | Preservat                  | ive             | Lab                           |  |  |
| 40 ml                            |                               | Vial                     | 3                                            |                                     | N<br>L/V     | HCL                        |                 | Accutest                      |  |  |
| 500 ml                           |                               | <u>Р</u><br>Р            | 2                                            |                                     | N/Y          | None<br>HNO3               | +               | Accutest                      |  |  |
| 500 ml                           |                               | ٢                        | 1                                            |                                     | N            | HNO3                       |                 | Accutest                      |  |  |

At 1345 pump change occurred due to pump failure

|                                                         | O'BRIEN & GERE                |                          |               | LOWII                               | OW GIOU     | nd Water S                                  |                                 |                       |
|---------------------------------------------------------|-------------------------------|--------------------------|---------------|-------------------------------------|-------------|---------------------------------------------|---------------------------------|-----------------------|
| Date:                                                   | 9/16/2015                     | Persor                   | nnel:         | D. M                                | ongiardo    | Weather:                                    | Sunny 9                         | 90's                  |
| Site Name:                                              | Evor Phillips                 | Pump/                    | Controller ID | )#: <u>Mc</u>                       | nsoon       | Well #:                                     | ISCO-MW-8                       |                       |
| Site Location:                                          | Old Bridge, NJ                | Sampl                    | ing Method:   | Lov                                 | w-Flow      | Project #:                                  | 5130                            | 8                     |
| Monitoring Equip. Used (include ID#): 19925 U-52        |                               | _                        |               |                                     |             |                                             |                                 |                       |
| Well informat                                           | ion:                          | ·                        | Well Diame    | ter Multipliers                     |             | * Measuremer                                | its taken from                  |                       |
| Depth of Well*                                          | :                             | 26.52 ft.                | 2 in. = 0.16  | 63 gal/ft                           |             | Х                                           | Top of Well C                   | asing                 |
| Depth to Wate                                           |                               | 24.14 ft.                | 4 in. = 0.6   | •                                   |             |                                             | Top of Protec                   | •                     |
| Length of Wat                                           | er Column:                    | ft.                      | 6 in. = 1.46  | 69 gal/ft                           |             |                                             | 1                               | -                     |
| Pump Intake D                                           | Depth:                        | ft.                      | 8 in. = 2.6   | 11 gal/ft                           |             |                                             | (Other, Specif                  | fy)                   |
| Well Diameter                                           | : <u> </u>                    | 2 in.                    |               |                                     |             |                                             | _                               |                       |
| Start Purge Ti                                          | me:                           | 1143                     |               | indicate units                      |             |                                             |                                 |                       |
| Elapsed<br>Time                                         | Depth To<br>Water<br>(ft bmp) | Temperature<br>(Celsius) | pH (SU)       | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV) | Dissolved<br>Oxygen (mg/l)                  | Turbidity<br>(NTU)              | Flow Rate<br>(ml/min) |
| 1145                                                    | 24.49                         | 19.54                    | 13.73         | 51.4                                | 145         | 0.00                                        | 999                             | 400                   |
| 1150                                                    | 24.49                         | 18.13                    | 13.76         | 41.9                                | 151         | 0.00                                        | 591                             | 400                   |
| 1155                                                    | 24.54                         | 17.80                    | 13.76         | 39.4                                | 148         | 0.00                                        | 366                             | 400                   |
| 1200                                                    | 24.54                         | 17.96                    | 13.73         | 37.9                                | 142         | 0.00                                        | 165                             | 400                   |
| 1205                                                    | 24.54                         | 17.72                    | 13.72         | 36.6                                | 139         | 0.00                                        | 73.7                            | 400                   |
| 1210                                                    | 24.54                         | 17.98                    | 13.69         | 35.7                                | 136         | 0.00                                        | 41.9                            | 400                   |
| 1215                                                    | 24.54                         | 18.18                    | 13.68         | 35.4                                | 136         | 0.00                                        | 24                              | 400                   |
| 1220                                                    | 24.54                         | 18.19                    | 13.68         | 35.1                                | 133         | 0.00                                        | 18                              | 400                   |
| 1225                                                    | 24.58                         | 17.97                    | 13.67         | 34.8                                | 132         | 0.00                                        | 5.2                             | 400                   |
|                                                         |                               |                          |               |                                     |             |                                             |                                 |                       |
|                                                         |                               |                          |               |                                     |             |                                             |                                 |                       |
|                                                         |                               |                          |               |                                     |             |                                             |                                 |                       |
|                                                         |                               |                          |               |                                     |             |                                             |                                 |                       |
|                                                         |                               |                          |               |                                     |             |                                             |                                 |                       |
|                                                         |                               |                          |               |                                     |             |                                             |                                 |                       |
|                                                         |                               |                          |               |                                     |             |                                             |                                 |                       |
|                                                         |                               |                          |               |                                     |             |                                             |                                 |                       |
|                                                         |                               |                          |               |                                     |             |                                             |                                 |                       |
|                                                         |                               |                          |               |                                     |             |                                             |                                 |                       |
| Stabilization                                           | Δ ≤ 0.3'                      | ± 3%                     | ± 0.1         | ± 3%                                | ± 10 mV     | ± 10%                                       | ± 10%                           | 100 ≤ X ≤ 500         |
| End Purge Tin Water sample Time collected Physical appe | t: 1230<br>earance at start   | udy Brownish Yel         |               | Total volume of                     | -           | removed:<br>earance at sam<br>Color<br>Odor | 18 L  pling Clear Yellowis None | <u></u>               |
| Sheen/Free Pi                                           |                               |                          | •             |                                     | Sheen/F     | Free Product                                | None                            | _                     |
|                                                         |                               | ne                       | -             |                                     | Sneen/i     | -ree Product                                | None                            |                       |
| Analytical Par<br>Container S                           |                               | ntainer Type             | # Collecte    | ed Field                            | Filtered    | Preservat                                   | ive                             | Lab                   |
| Ou itali lei v                                          | 5120 001                      | Vial                     | 3             | i ielu                              | N           | HCL                                         |                                 | Lab                   |

### 

| Date:                                       | 9/15/2015                     | Persor                   | nnel:         | D. Mo                               | ongiardo     | Weather:                   | Sunny 80's         |                       |  |
|---------------------------------------------|-------------------------------|--------------------------|---------------|-------------------------------------|--------------|----------------------------|--------------------|-----------------------|--|
| Site Name:                                  | Evor Phillips                 | Pump                     | Controller ID |                                     | Monsoon      |                            | ISCO-MW-9          |                       |  |
|                                             |                               | •                        |               |                                     |              | Well #:                    |                    |                       |  |
| Site Location:                              | Old Bridge, NJ                | Sampl                    | ing Method:   | Lov                                 | v-Flow       | Project #:                 | 5130               | 8                     |  |
| Monitoring Eq                               | uip. Used (include            | ID#): 19925              | U-52          |                                     |              | <u> </u>                   |                    |                       |  |
| Well informat                               | ion:                          |                          | Well Diamet   | ter Multipliers                     |              | * Measuremer               | its taken from     |                       |  |
| Depth of Well*                              | :                             | 24.85 ft.                | 2 in. = 0.16  | 63 gal/ft                           |              | X                          | Top of Well C      | asing                 |  |
| Depth to Wate                               | r*:                           | 22.72 ft.                | 4 in. = 0.65  | 53 gal/ft                           |              |                            | Top of Protect     | tive Casing           |  |
| ength of Wat                                | er Column:                    | 2.13 ft.                 | 6 in. = 1.46  | 69 gal/ft                           |              |                            |                    |                       |  |
| Pump Intake [                               | Depth:                        | ft.                      | 8 in. = 2.61  | 11 gal/ft                           |              |                            | (Other, Speci      | fy)                   |  |
| Well Diameter                               | : <u> </u>                    | <u>2</u> in.             |               |                                     |              |                            |                    |                       |  |
| Start Purge Ti                              | me:                           | 1130                     |               | indicate units                      |              |                            |                    |                       |  |
| Elapsed<br>Time                             | Depth To<br>Water<br>(ft bmp) | Temperature<br>(Celsius) | pH (SU)       | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)  | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU) | Flow Rate<br>(ml/min) |  |
| 1135                                        | 22.80                         | 15.73                    | 5.87          | 0.760                               | 344          | 0.00                       | 1000               | 500                   |  |
| 1140                                        | 23.08                         | 14.46                    | 5.60          | 0.598                               | 382          | 0.00                       | 483                | 500                   |  |
| 1145                                        | 23.11                         | 14.38                    | 5.68          | 0.626                               | 410          | 0.00                       | 237                | 500                   |  |
| 1150                                        | 23.04                         | 14.93                    | 5.70          | 0.636                               | 429          | 0.00                       | 192                | 500                   |  |
| 1155                                        | 23.06                         | 15.01                    | 5.68          | 0.644                               | 395          | 0.00                       | 103                | 500                   |  |
| 1200                                        | 23.09                         | 14.50                    | 5.57          | 0.555                               | 432          | 0.00                       | 83                 | 500                   |  |
| 1205                                        | 23.08                         | 14.55                    | 5.64          | 0.617                               | 455          | 0.00                       | 62.1               | 500                   |  |
| 1210                                        | 23.09                         | 14.56                    | 5.60          | 0.566                               | 470          | 0.00                       | 18.4               | 500                   |  |
| 1215                                        | 23.09                         | 14.68                    | 5.60          | 0.587                               | 475          | 0.00                       | 17.4               | 500                   |  |
| 1220                                        | 23.10                         | 14.54                    | 5.59          | 0.578                               | 482          | 0.00                       | 14.5               | 500                   |  |
|                                             |                               |                          |               |                                     |              | • • • •                    |                    |                       |  |
|                                             |                               |                          |               |                                     |              |                            |                    |                       |  |
|                                             |                               |                          |               |                                     |              |                            |                    | 1                     |  |
|                                             |                               |                          |               |                                     |              |                            |                    |                       |  |
|                                             |                               |                          |               |                                     |              |                            |                    |                       |  |
|                                             |                               |                          |               |                                     |              |                            |                    |                       |  |
|                                             |                               |                          |               |                                     |              |                            |                    |                       |  |
|                                             |                               |                          |               |                                     |              |                            |                    |                       |  |
| Stabilization                               | Δ ≤ 0.3'                      | ± 3%                     | ± 0.1         | ± 3%                                | ± 10 mV      | ± 10%                      | ± 10%              | 100 ≤ X ≤ 500         |  |
| End Purge Tin  Water sample  Time collected | <del></del>                   | 225                      |               | Total volume of <sub>I</sub>        | -            | removed:                   | 6.6 gal            |                       |  |
| Pnysical appe                               |                               | low Cloudy               |               |                                     | Physical app | Color                      | Clear              |                       |  |
|                                             | Odor Nor                      |                          | •             |                                     |              | Odor                       | None               | _                     |  |
| Sheen/Free P                                |                               |                          | -             |                                     | Sheen/l      | Free Product               | None               | _                     |  |

| Container Size | Container Type | # Collected | Field Filtered | Preservative | Lab      |
|----------------|----------------|-------------|----------------|--------------|----------|
| 40 ml          | Vial           | 3           | N              | HCL          | Accutest |
| 500 ml         | Р              | 2           | N/Y            | None         | Accutest |
| 500 ml         | Р              | 1           | N              | HNO3         | Accutest |
|                |                |             |                |              |          |
|                |                |             |                |              |          |
|                | •              |             |                |              |          |
| Notos          |                |             |                |              |          |

| 10100. |  |
|--------|--|
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |

| <b></b>                                                 | BRIEN                                      | 5 GERE                   |               | Low F                               | low Grou     | nd Water S                                                   | amplin                        | g Log          |  |
|---------------------------------------------------------|--------------------------------------------|--------------------------|---------------|-------------------------------------|--------------|--------------------------------------------------------------|-------------------------------|----------------|--|
| Date:                                                   | 9/15/2015                                  | Persor                   | nnel:         | K.                                  | Biegert      | Weather:                                                     | Sun                           | iny, 80        |  |
| Site Name:                                              | Evor Phillips                              | -                        | Controller IE |                                     | onsoon       | - Well #:                                                    |                               |                |  |
|                                                         |                                            | <del>-</del>             |               |                                     |              |                                                              | MW-10S                        |                |  |
|                                                         | Old Bridge, NJ                             | -                        | ing Method:   | L0                                  | w-Flow       | Project #:                                                   | 5                             | 1308           |  |
|                                                         | uip. Used (include                         | e ID#): 14257            |               |                                     | T            |                                                              |                               |                |  |
| Well informat                                           |                                            |                          |               | eter Multipliers                    |              | * Measuremen                                                 | Ī                             |                |  |
| Depth of Well*                                          |                                            | 31.30 ft.                | 2 in. = 0.1   | •                                   |              | Х                                                            | Top of We                     | J              |  |
| Depth to Wate                                           | -                                          | 20.45 ft.                | 4 in. = 0.6   | •                                   |              |                                                              | Top of Pro                    | tective Casing |  |
| Length of Wat                                           |                                            | ft.                      | 6 in. = 1.4   | •                                   |              |                                                              | (Othor Co                     | o oifu)        |  |
| Pump Intake D<br>Well Diameter                          | · -                                        | ft.<br>4 in.             | 8 in. = 2.6   | 11 gai/π                            |              |                                                              | (Other, Sp                    | ecity)         |  |
|                                                         |                                            |                          |               |                                     |              |                                                              |                               |                |  |
| Start Purge Ti                                          |                                            | 1034                     | _             | indicate units                      | _            |                                                              |                               |                |  |
| Elapsed<br>Time                                         | Depth To<br>Water<br>(ft bmp)              | Temperature<br>(Celsius) | pH (SU)       | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)  | Dissolved<br>Oxygen (mg/l)                                   | Turbidit<br>(NTU)             | •              |  |
| 1035                                                    | 20.65                                      | 15.05                    | 5.99          | 0.458                               | 209          | 0.66                                                         | 367                           | 400            |  |
| 1040                                                    | 20.65                                      | 14.56                    | 5.41          | 0.494                               | 234          | 0.00                                                         | 13.6                          | 400            |  |
| 1045                                                    | 20.65                                      | 14.78                    | 5.31          | 0.482                               | 241          | 0.00                                                         | 7.1                           | 400            |  |
| 1050                                                    | 20.65                                      | 15.02                    | 5.35          | 0.467                               | 249          | 0.11                                                         | 2.8                           | 400            |  |
| 1055                                                    | 20.65                                      | 14.80                    | 5.34          | 0.457                               | 255          | 0.14                                                         | 3.6                           | 400            |  |
| 1100                                                    | 20.65                                      | 14.23                    | 5.33          | 0.441                               | 255          | 0.00                                                         | 0.2                           | 400            |  |
| 1105                                                    | 20.65                                      | 14.33                    | 5.33          | 0.430                               | 255          | 0.00                                                         | 0.1                           | 400            |  |
| 1110                                                    | 20.65                                      | 14.18                    | 5.35          | 0.427                               | 264          | 0.00                                                         | 0.0                           | 400            |  |
| 1115                                                    | 20.65                                      | 14.55                    | 5.35          | 0.425                               | 268          | 0.00                                                         | 0.0                           | 400            |  |
| 1120                                                    | 20.65                                      | 15.34                    | 5.36          | 0.423                               | 271          | 0.00                                                         | 0.0                           | 400            |  |
|                                                         |                                            |                          |               |                                     |              |                                                              |                               |                |  |
|                                                         |                                            |                          |               |                                     |              |                                                              |                               |                |  |
|                                                         |                                            |                          |               |                                     |              |                                                              |                               |                |  |
|                                                         |                                            |                          |               |                                     |              |                                                              |                               |                |  |
|                                                         |                                            |                          |               |                                     |              |                                                              |                               |                |  |
|                                                         |                                            |                          |               |                                     |              |                                                              |                               |                |  |
|                                                         |                                            |                          |               |                                     |              |                                                              |                               |                |  |
|                                                         |                                            |                          |               |                                     |              |                                                              |                               |                |  |
|                                                         |                                            |                          |               |                                     |              |                                                              |                               |                |  |
| Stabilization                                           | Δ ≤ 0.3'                                   | ± 3%                     | ± 0.1         | ± 3%                                | ± 10 mV      | ± 10%                                                        | ± 10%                         | 100 ≤ X ≤ 500  |  |
| End Purge Tin Water sample Time collected Physical appe | 2: 1125 earance at start Color Cle Odor No | ne                       | -<br>-        | Total volume of                     | Physical app | removed:<br>earance at samp<br>Color<br>Odor<br>Free Product | 20 L  Dling Clear  None  None |                |  |
| Analytical Par                                          | rameters:                                  |                          |               |                                     |              |                                                              |                               |                |  |
| Container                                               |                                            | ntainer Type             | # Collect     | ed Field                            | d Filtered   | Preservat                                                    | ive                           | Lab            |  |
| 40 ml                                                   |                                            | Vial                     | 3             |                                     | N            | HCL                                                          |                               | Accutest       |  |
| 500 ml                                                  |                                            | Р                        | 2             |                                     | N / Y        | None                                                         |                               | Accutest       |  |
| 500 ml                                                  |                                            | Р                        | 1             |                                     | N            | HNO3                                                         |                               | Accutest       |  |
|                                                         |                                            |                          | 1             |                                     |              |                                                              |                               |                |  |

| <b>5</b> 0                                              | BRIEN              | 5 GERE                   |                | Low FI                  | ow Grou     | nd Water S                            | ampling                       | Log                   |
|---------------------------------------------------------|--------------------|--------------------------|----------------|-------------------------|-------------|---------------------------------------|-------------------------------|-----------------------|
| Date:                                                   | 9/15/2015          | Perso                    | nnel:          | K.                      | Biegert     | Weather:                              | Clear, 7                      | 75°                   |
| Site Name:                                              | Evor Phillips      | •                        | /Controller ID |                         | nsoon       | - Well #:                             | MW-14                         |                       |
|                                                         | Old Bridge, NJ     | •                        | ling Method:   |                         | w-Flow      | Project #:                            | 51308                         |                       |
|                                                         |                    | •                        | •              | LO                      | W-1 10 W    | _ Floject #.                          | 31300                         | <u> </u>              |
|                                                         | uip. Used (include | : ID#): 14257            | ī              |                         |             | * Management                          | to tolera franc               |                       |
| Well informat<br>Depth of Well*                         |                    | 17.45 ft.                | 2 in. = 0.1    | eter Multipliers        |             | * Measuremen                          | Top of Well Ca                | aaina                 |
| Depth to Wate                                           |                    | 7.10 ft.                 | 4 in. = 0.6    | J                       |             | ^                                     | Top of Protect                | •                     |
| Length of Wate                                          |                    | ft.                      | 6 in. = 1.4    | •                       |             |                                       | TOP OF TOLOGO                 | ive easing            |
| Pump Intake D                                           |                    | ft.                      | 8 in. = 2.6    | -                       |             |                                       | (Other, Specif                | y)                    |
| Well Diameter                                           | : <u> </u>         | 4 in.                    |                |                         |             |                                       |                               |                       |
| Start Purge Tir                                         | me:                |                          | •              | in dia ata conita       |             |                                       |                               |                       |
|                                                         | Depth To           |                          |                | indicate units Specific |             | T                                     |                               |                       |
| Elapsed<br>Time                                         | Water<br>(ft bmp)  | Temperature<br>(Celsius) | pH (SU)        | Conductivity (mS/cm)    | ORP<br>(mV) | Dissolved<br>Oxygen (mg/l)            | Turbidity<br>(NTU)            | Flow Rate<br>(ml/min) |
| 0842                                                    | 7.15               | 14.89                    | 8.59           | 1.41                    | 65          | 2.27                                  | 22.8                          | 400                   |
| 0847                                                    | 7.15               | 14.32                    | 5.93           | 1.04                    | 140         | 2.83                                  | 13.1                          | 400                   |
| 0852                                                    | 7.15               | 14.43                    | 5.77           | 1.04                    | 144         | 3.08                                  | 13.3                          | 400                   |
| 0857                                                    | 7.15               | 14.32                    | 5.60           | 1.02                    | 155         | 3.48                                  | 13.2                          | 400                   |
| 0902                                                    | 7.15               | 14.44                    | 5.57           | 0.994                   | 161         | 3.35                                  | 11.1                          | 400                   |
| 0907                                                    | 7.15               | 14.37                    | 5.49           | 0.963                   | 173         | 3.69                                  | 8.5                           | 400                   |
|                                                         | I                  | I                        |                | Away from pum           | •           |                                       |                               |                       |
| 0917                                                    | 7.15               | 14.42                    | 5.49           | 0.930                   | 185         | 3.68                                  | 2.6                           | 400                   |
| 0922                                                    | 7.15               | 14.48                    | 5.52           | 0.929                   | 184         | 3.65                                  | 1.6                           | 400                   |
| 0927                                                    | 7.15               | 14.51                    | 5.51           | 0.931                   | 193         | 3.66                                  | 0.5                           | 400                   |
|                                                         |                    |                          |                |                         |             |                                       |                               |                       |
|                                                         |                    |                          |                |                         |             |                                       |                               |                       |
|                                                         |                    |                          |                |                         |             |                                       |                               |                       |
|                                                         |                    |                          |                |                         |             |                                       |                               |                       |
|                                                         |                    |                          |                |                         |             |                                       |                               |                       |
|                                                         |                    |                          |                |                         |             |                                       |                               |                       |
|                                                         |                    |                          |                |                         |             |                                       |                               |                       |
|                                                         |                    |                          |                |                         |             |                                       |                               |                       |
| Stabilization                                           | Δ ≤ 0.3'           | ± 3%                     | ± 0.1          | ± 3%                    | ± 10 mV     | ± 10%                                 | ± 10%                         | 100 ≤ X ≤ 500         |
| End Purge Tim Water sample Time collected Physical appe | :<br>:             | 935<br>ar                |                | Total volume of         |             | removed:<br>pearance at samp<br>Color | 22 L<br><b>Dling</b><br>Clear |                       |
|                                                         | Odor Nor           | ne                       | _              |                         |             | Odor                                  | None                          | _                     |
| Sheen/Free Pr                                           | oduct Noi          | ne                       | <u> </u>       |                         | Sheen/I     | Free Product                          | None                          | <u>-</u>              |
| Analytical Par                                          | ameters:           |                          |                |                         |             |                                       |                               |                       |
| Container S                                             | Size Cor           | ntainer Type             | # Collect      | ed Field                | Filtered    | Preservat                             | ive                           | Lab                   |
| 40 ml                                                   |                    | Vial                     | 3              |                         | N<br>N / V  | HCL                                   |                               | Accutest              |
| 500 ml<br>500 ml                                        |                    | <u>Р</u><br>Р            | 1              |                         | N / Y<br>N  | None<br>HNO3                          |                               | Accutest Accutest     |
| อบบ เปเ                                                 |                    | Г                        | 1              |                         | IN          | HINU3                                 |                               | Accutest              |
|                                                         |                    |                          |                |                         |             |                                       |                               |                       |
|                                                         |                    |                          |                |                         |             |                                       |                               |                       |
| Notes:                                                  | Pump set to        | 10' below toc            |                |                         |             |                                       |                               |                       |

2RND2-MW-14SS-091515

### O'BRIEN 5 GERE **Low Flow Ground Water Sampling Log** Date: 9/15/2015 Personnel: K. Biegert Weather: Sunny, 75° MW-14SD Site Name: Evor Phillips Pump/Controller ID#: Monsoon Well #: Sampling Method: Site Location: Old Bridge, NJ Low-Flow Project #: 51308 Monitoring Equip. Used (include ID#): 14257 U-52 Well information: Well Diameter Multipliers Measurements taken from Depth of Well\*: 17.45 ft. 2 in. = 0.163 gal/ft Top of Well Casing 7.10 ft. Depth to Water\*: 4 in. = 0.653 gal/ftTop of Protective Casing Length of Water Column: 6 in. = 1.469 gal/ft ft. 8 in. = 2.611 gal/ft Pump Intake Depth: ft. (Other, Specify) 4 in. Well Diameter: Start Purge Time: indicate units Depth To Specific **Elapsed Temperature** ORP Dissolved **Turbidity** Flow Rate Water Conductivity Time (Celsius) (mV) Oxygen (mg/l) (NTU) (ml/min) (ft bmp) pH (SU) (mS/cm) 0935 7.15 13.75 5.71 1.01 177 4.22 999 400 0.941 999 400 0940 7.15 14.14 5.86 160 2.77 0.909 0945 7.15 14.67 5.92 171 2.68 999 400 0950 7.15 14.60 5.95 0.922 164 2.67 999 400 0955 7.15 14.84 5.94 0.921 163 2.65 999 400 1000 7.15 14.82 5.95 0.921 162 2.61 999 400 1005 7.15 14.80 5.95 0.922 161 2.59 999 400 Stabilization $\Delta \leq 0.3$ ± 3% $\pm 0.1$ ± 3% ± 10 mV ± 10% ± 10% $100 \le X \le 500$ End Purge Time: 1020 Water sample: Time collected: Total volume of purged water removed: 1010 14 L Physical appearance at start Physical appearance at sampling Color Blackish Black Color Odor None Odor None Sheen/Free Product None Sheen/Free Product None **Analytical Parameters:** Container Size Container Type # Collected Field Filtered Preservative Lab 40 ml Vial Ν HCL Accutest 500 ml Ρ 2 N/YNone Accutest Р 500 ml 1 Ν HNO3 Accutest

### i:\50\projects\GE\33961\n&d\field forms\microlog.xls

0944 empty flow cell

Pump set to 15' hgs. Pump touched bottom of well.

| <b>6</b> 0                                                                                       | BRIEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 GERE                    |                                                  | Low FI                        | ow Grou       | nd Water S                                                 | amplir           | ng Log                        |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------|-------------------------------|---------------|------------------------------------------------------------|------------------|-------------------------------|
| Date:                                                                                            | 9/16/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Persor                    | nnel:                                            | D. M                          | longiardo     | Weather:                                                   | Sur              | nny 70's                      |
| Site Name:                                                                                       | Evor Phillips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                         | Controller ID                                    |                               | onsoon        | - Well #:                                                  |                  | 1-BT-2                        |
|                                                                                                  | Old Bridge, NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del>-</del>              | ling Method:                                     |                               | w-Flow        | Project #:                                                 |                  | 1308                          |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                         | · ·                                              | LO                            | N-LIOW        | Fioject #.                                                 |                  | 1300                          |
|                                                                                                  | uip. Used (include                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e ID#): 19925             |                                                  | N. A M. San Danas             |               | * N.A a                                                    | · · ·            |                               |
| Well informati                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26 E0 ft                  |                                                  | ter Multipliers               |               | * Measuremen                                               | 7                |                               |
| Depth of Well*<br>Depth to Wate                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.59 ft.<br>26.31 ft.    | 2 in. = 0.16<br>4 in. = 0.65                     | •                             | 1             | X                                                          | Top of Pro       | ell Casing<br>otective Casing |
| Length of Wate                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.31 It.                 | 6 in. = 1.46                                     | •                             |               | -                                                          | Top or i         | Jiective Casing               |
| Pump Intake D                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ft.                       | 8 in. = 2.61                                     | •                             | 1             |                                                            | (Other, Sp       | pecify)                       |
| Well Diameter:                                                                                   | · —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 in.                     |                                                  | ŭ                             |               |                                                            | 1,               | • •                           |
| Start Purge Tir                                                                                  | me:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0810                      |                                                  | teettee ta conta              |               |                                                            |                  |                               |
| Elapsed<br>Time                                                                                  | Depth To<br>Water<br>(ft bmp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temperature (Celsius)     | pH (SU)                                          | Specific Conductivity (mS/cm) | ORP<br>(mV)   | Dissolved<br>Oxygen (mg/l)                                 | Turbidi<br>(NTU) | *                             |
| 0815                                                                                             | 26.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.44                     | 13.48                                            | 25.2                          | 58            | 0.00                                                       | 999              | 400                           |
| 0820                                                                                             | 26.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.64                     | 13.21                                            | 15.9                          | 41            | 0.00                                                       | 999              | 400                           |
| 0825                                                                                             | 26.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.62                     | 13.09                                            | 13.2                          | 35            | 0.00                                                       | 999              | 400                           |
| 0830                                                                                             | 26.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.58                     | 13.00                                            | 11.3                          | 25            | 0.00                                                       | 999              | 400                           |
| 0835                                                                                             | 26.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.90                     | 12.91                                            | 9.74                          | 19            | 0.00                                                       | 999              | 350                           |
| 0840                                                                                             | 26.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.89                     | 12.85                                            | 9.08                          | 19            | 0.00                                                       | 999              | 350                           |
| 0845                                                                                             | 26.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.80                     | 12.84                                            | 8.70                          | 18            | 0.00                                                       | 999              | 350                           |
| 0850                                                                                             | 26.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.62                     | 12.79                                            | 7.86                          | 14            | 0.00                                                       | 813              | 350                           |
| 0855                                                                                             | 26.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.51                     | 12.76                                            | 7.45                          | 13            | 0.00                                                       | 955              | 350                           |
| 0900                                                                                             | 26.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.85                     | 12.71                                            | 7.08                          | 17            | 0.00                                                       | 999              | 350                           |
| 0905                                                                                             | 26.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.77                     | 12.71                                            | 7.10                          | 18            | 0.00                                                       | 999              | 350                           |
| 0910                                                                                             | 26.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.80                     | 12.71                                            | 6.98                          | 19            | 0.00                                                       | 940              | 350                           |
| 0915                                                                                             | 26.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.90                     | 12.69                                            | 6.83                          | 21            | 0.00                                                       | 893              | 350                           |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | <del>                                     </del> |                               |               | <del> </del>                                               |                  |                               |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                                                  |                               |               |                                                            |                  |                               |
| Stabilization                                                                                    | Δ ≤ 0.3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ± 3%                      | ± 0.1                                            | ± 3%                          | ± 10 mV       | ± 10%                                                      | ± 10%            | 6 100 ≤ X ≤ 500               |
| End Purge Tim Water sample Time collected Physical appe Sheen/Free Pr Analytical Par Container S | 10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   10920   1092 | oudy Brownish Yell<br>one |                                                  |                               | Physical appo | removed: earance at samp Color Odor Free Product Preservat | None None        | rownish Yellow                |
| 40 ml                                                                                            | size Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vial                      | # Collecte                                       | tu Fleid                      | N             | HCL                                                        | ive              | Accutest                      |
| 500 ml                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                         | 4                                                | <del></del>                   | N / Y         | None                                                       |                  | Accutest                      |
| 500 ml                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                         | 2                                                | <del></del>                   | N             | HNO3                                                       |                  | Accutest                      |

DUP taken here



|                 | BITIEN                        | OGERE                    |                | LOW F                               | low Grou     | iliu vvalei S              | amping                                      | Log                   |
|-----------------|-------------------------------|--------------------------|----------------|-------------------------------------|--------------|----------------------------|---------------------------------------------|-----------------------|
| Date:           | 10/16/2015                    | Persor                   | nnel:          | K.                                  | Teitsma      | Weather:                   | 60°F Cl                                     | ear                   |
| Site Name:      | Evor Phillips                 | -<br>Pump                | /Controller ID | D#: Monsoon /                       | / # 030731   | Well #:                    | IW1-BT                                      | Γ-2                   |
| Site Location:  | Old Bridge, NJ                | -<br>Samp <sup>r</sup>   | ling Method:   | Lo                                  | w-Flow       | —<br>Project #:            | 51308                                       | 8                     |
|                 | uip. Used (include            | _                        | a U-52 #       |                                     | 245/21061    | _ '                        |                                             | <del></del>           |
| Well informat   |                               | , IDII J. 1101           |                | eter Multipliers                    | 10/2/1001    | * Measuremer               | eta taken from                              |                       |
| Depth of Well*  |                               | 36.60 ft.                | 2 in. = 0.1    | •                                   |              | X                          | * Measurements taken from                   |                       |
| Depth to Wate   |                               | 26.22 ft.                | 4 in. = 0.1    | •                                   |              | ^                          | Top of Well Casing Top of Protective Casing |                       |
| Length of Wate  |                               | ft.                      | 6 in. = 1.4    | -                                   |              |                            | Top of Flotective Casing                    |                       |
| Pump Intake D   |                               | ft.                      | 8 in. = 2.6    | •                                   |              |                            | (Other, Specify                             | iv)                   |
| Well Diameter   | · —                           | 2 in.                    |                | ŭ                                   |              |                            | 1,                                          | • •                   |
| Start Purge Tir | me:                           | 1040                     |                | indicate units                      | <del></del>  |                            |                                             |                       |
| Elapsed<br>Time | Depth To<br>Water<br>(ft bmp) | Temperature<br>(Celsius) | pH (SU)        | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)  | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU)                          | Flow Rate<br>(ml/min) |
| 1040            | 26.39                         | 15.98                    | 12.77          | 7.32                                | 163          | 1.40                       | 0.0                                         | 400                   |
| 1045            | 26.40                         | 16.74                    | 12.66          | 6.59                                | 167          | 1.14                       | 0.0                                         | 400                   |
| 1050            | 26.40                         | 16.01                    | 12.42          | 5.18                                | 180          | 1.29                       | 0.0                                         | 350                   |
| 1055            | 26.40                         | 15.90                    | 12.29          | 4.68                                | 187          | 1.24                       | 0.0                                         | 350                   |
| 1100            | 26.40                         | 15.91                    | 12.14          | 4.32                                | 193          | 1.14                       | 679                                         | 350                   |
| 1105            | 26.40                         | 15.86                    | 11.93          | 3.92                                | 204          | 1.05                       | 741                                         | 350                   |
| 1110            | 26.40                         | 16.15                    | 11.98          | 4.01                                | 192          | 1.02                       | 692                                         | 350                   |
| 1115            | 26.40                         | 16.21                    | 11.95          | 3.97                                | 196          | 0.94                       | 740                                         | 350                   |
| 1120            | 26.40                         | 16.21                    | 11.88          | 3.83                                | 204          | 0.94                       | 523                                         | 350                   |
| 1125            | 26.40                         | 16.36                    | 11.87          | 3.81                                | 206          | 0.86                       | 500                                         | 350                   |
| 1130            | 26.40                         | 16.31                    | 11.82          | 3.71                                | 214          | 0.95                       | 480                                         | 350                   |
| 1135            | 26.40                         | 16.31                    | 11.80          | 3.72                                | 217          | 0.91                       | 507                                         | 350                   |
|                 |                               |                          |                |                                     |              |                            |                                             |                       |
|                 |                               |                          |                |                                     |              |                            |                                             |                       |
|                 |                               |                          |                |                                     |              |                            |                                             |                       |
|                 |                               |                          |                |                                     |              |                            |                                             |                       |
|                 |                               |                          |                |                                     |              |                            |                                             |                       |
|                 |                               |                          |                |                                     |              |                            |                                             |                       |
|                 |                               |                          |                |                                     |              |                            |                                             |                       |
| Stabilization   | Δ ≤ 0.3'                      | ± 3%                     | ± 0.1          | ± 3%                                | ± 10 mV      | ± 10%                      | ± 10%                                       | 100 ≤ X ≤ 500         |
| End Purge Tim   |                               | 140<br>W1-BT-2-101615    |                |                                     |              |                            |                                             |                       |
| Time collected  |                               | _                        |                | Total volume of                     | -            |                            | 22 L                                        |                       |
| Physical appe   | earance at start              | <u> </u>                 |                |                                     | Physical app | pearance at samp           | -                                           |                       |
|                 |                               | oudy Brownish Tar        | <u>1</u>       |                                     |              | Color                      | Clear/Yellow T                              | <u>ſi</u> nt          |
| Sheen/Free Pr   | Odor Noi<br>roduct Noi        |                          | -<br>-         |                                     | Sheen/       | Odor<br>/Free Product      | None<br>None                                | -<br>-                |
| Analytical Par  | rameters:                     |                          |                |                                     |              |                            |                                             |                       |
| Container S     |                               | ntainer Type             | # Collect      | ted Field                           | d Filtered   | Preservat                  | iive                                        | Lab                   |
| 40 ml           |                               | Vial                     | 3              |                                     | N            | HCL                        |                                             | Accutest              |
| 500 ml          |                               | P                        | 2              | !                                   | N/Y          | None                       |                                             | Accutest              |
| 500 ml          |                               | Р                        | 1              |                                     | N            | HNO3                       |                                             | Accutest              |
|                 | <del></del>                   |                          | <del> </del>   | <del></del>                         |              | +                          | -+                                          |                       |
|                 | <del></del>                   |                          | +              | <del></del>                         |              | +                          |                                             |                       |
| Notes:          |                               |                          |                |                                     |              |                            |                                             |                       |
| 110.00.         |                               |                          |                |                                     |              |                            |                                             |                       |
|                 |                               |                          |                |                                     |              |                            |                                             |                       |
|                 |                               |                          |                |                                     |              |                            |                                             |                       |
|                 |                               |                          |                |                                     |              |                            |                                             |                       |

### O'BRIEN 5 GERE **Low Flow Ground Water Sampling Log** Date: 10/16/2015 Personnel: D. Mongiardo Weather: Clear 50's Pump/Controller ID#: Well #: ISCO-MW-2 Site Name: Evor Phillips Bailer Sampling Method: Site Location: Old Bridge, NJ Low-Flow Project #: 51308 Monitoring Equip. Used (include ID#): Horriba U-52 # Well information: Well Diameter Multipliers Measurements taken from Depth of Well\*: 23.55 ft. 2 in. = 0.163 gal/ft Top of Well Casing 22.21 ft. Depth to Water\*: 4 in. = 0.653 gal/ftTop of Protective Casing Length of Water Column: 1.34 ft. 6 in. = 1.469 gal/ft 8 in. = 2.611 gal/ft (Other, Specify) Pump Intake Depth: ft. 2 in. Well Diameter: Start Purge Time: 0822 indicate units Depth To Specific **Elapsed Temperature** ORP Dissolved **Turbidity** Flow Rate Water Conductivity Time (Celsius) (mV) Oxygen (mg/l) (NTU) (ml/min) (mS/cm) (ft bmp) pH (SU) Well Volume 22.96 10.37 38.9 263 7.97 999 2 Well Volume 22.98 10.54 999 38.3 320 2.51 3 Well Volume 23.04 10.51 37.7 350 2.75 999 Stabilization Δ ≤ 0.3' ± 3% $\pm 0.1$ ± 3% ± 10 mV ± 10% ± 10% $100 \le X \le 500$ End Purge Time: Water sample: Time collected: Total volume of purged water removed: 1145 0.66 gal Physical appearance at start Physical appearance at sampling Color Yellowish/Brown Cloudy Yellowish Brown Cloudy Color Odor None Odor None Sheen/Free Product None Sheen/Free Product None **Analytical Parameters:** Container Size Container Type # Collected Field Filtered Preservative Lab 40 ml Vial Ν HCL Accutest

## Container Size Container Type # Collected Field Filtered Preservative Lab 40 ml Vial 3 N HCL Accutest 500 ml P 2 N / Y None Accutest 500 ml P 1 N HNO3 Accutest

Notes: Well Volume = 0.22 gal
Unable to pump, bail 3 well volumes



10/15/2015 Personnel: K.Teitsma Weather: 60°F Clear Date: Site Name: Evor Phillips Pump/Controller ID#: Monsoon / # 032552 Well #: ISCO-MW-3 Site Location: Old Bridge, NJ Sampling Method: Low-Flow Project #: 51308 Monitoring Equip. Used (include ID#): Horriba U-52 # 21099/20002 Well information: Well Diameter Multipliers Measurements taken from Depth of Well\*: 29.80 ft. 2 in. = 0.163 gal/ftTop of Well Casing 25.21 ft. Depth to Water\*: 4 in. = 0.653 gal/ftTop of Protective Casing Length of Water Column: 6 in. = 1.469 gal/ft ft. Pump Intake Depth: ft. 8 in. = 2.611 gal/ft (Other, Specify) 2 in. Well Diameter: Start Purge Time: 1240 indicate units Depth To Specific **Temperature** ORP Dissolved **Turbidity** Flow Rate **Elapsed** Water Conductivity Time (Celsius) (mV) Oxygen (mg/l) (NTU) (ml/min) (ft bmp) pH (SU) (mS/cm) 1240 26.48 17.96 13.12 9.10 104 0.58 0.0 400 1245 26.48 17.96 13.22 10.6 104 1.92 0.0 400 1250 26.48 17.98 13.25 11.0 108 1.11 0.0 400 1255 24.48 17.67 13.23 10.6 111 0.96 0.0 400 1300 24.48 17.96 13.22 10.4 110 0.33 0.0 400 1305 24.48 17.59 13.16 9.73 114 0.43 0.0 400 1310 24.48 17.41 13.24 10.4 116 0.21 0.0 400 1315 24.48 17.61 13.28 11.9 115 0.04 0.0 400 1320 24.48 17.93 13.24 11.3 115 0.00 0.0 400 1325 24.48 17.97 13.24 11.2 113 0.00 0.0 400 1330 24.48 18.17 13.25 11.4 113 0.00 0.0 400 1335 24.48 17.63 13.21 10.0 116 0.00 397 400 1340 24.48 17.61 13.23 10.6 111 0.00 760 400 1345 24.48 17.74 13.24 10.7 113 0.00 852 400 1000 400 1350 24.48 18.00 13.29 12.3 112 0.00 24.48 10.4 115 0.00 1000 400 1355 17.74 13.24 1400 24.48 17.61 13.25 10.3 115 0.00 1000 400 1405 17.71 10.7 114 1000 400 24.48 13.24 0.00 1410 17.82 13.25 10.7 113 0.00 1000 400 24.48 Stabilization  $\Delta \leq 0.3$ ± 3%  $\pm 0.1$ ± 3% ± 10 mV ± 10% ± 10%  $100 \le X \le 500$ End Purge Time: 1420 2RND3-ISCO-MW-3-101515 Water sample: Time collected: 1420 Total volume of purged water removed: 40 L Physical appearance at sampling Physical appearance at start Color Cloudy Yellow Tint Cloudy Brownish/Yellow Color Odor None Odor None Sheen/Free Product None Sheen/Free Product None Analytical Parameters: Container Size # Collected Field Filtered Preservative Container Type Lab 40 ml Vial Ν HCL Accutest 500 ml Ρ 2 N/YNone Accutest Ρ 500 ml 1 Ν HNO3 Accutest Notes:

| Go                           | BRIEN                         | 5 GERE                   |                            | L           | ow FI                        | ow Groui       | nd Water S                 | amplir             | ng Log       |                   |
|------------------------------|-------------------------------|--------------------------|----------------------------|-------------|------------------------------|----------------|----------------------------|--------------------|--------------|-------------------|
| Date:                        | 10/15/2015                    | Persor                   | nnel:                      |             | D. M                         | ongiardo       | Weather:                   | Sur                | nny 50's     |                   |
| Site Name:                   | Evor Phillips                 | •                        | Controller ID              |             | Monsoon / # 30731            |                | Well #:                    |                    | O-MW-4       | _                 |
|                              |                               |                          |                            |             |                              |                |                            |                    |              | _                 |
|                              | Old Bridge, NJ                |                          | ing Method:                | _           |                              | w-Flow         | Project #:                 | 5                  | 1308         | _                 |
|                              | uip. Used (include            | ID#): Horriba            | a U-52 #                   |             | 1                            | 61/19245       |                            |                    |              |                   |
| Well informat                |                               |                          | Well Diame                 |             |                              |                | * Measuremen               | Ī                  |              |                   |
| Depth of Well*               |                               | 19.85 ft.                | 2 in. = 0.1                | -           |                              |                | X                          | Top of We          | •            |                   |
| Depth to Wate                |                               | 18.65 ft.                | 4 in. = 0.6                | -           |                              |                |                            | Top of Pro         | otective Cas | ing               |
| Length of Wate Pump Intake D |                               | 1.2 ft.<br>ft.           | 6 in. = 1.4<br>8 in. = 2.6 | -           |                              |                |                            | (Other, Sp         | necify)      |                   |
| Well Diameter                |                               | it.<br>2 in.             | 0 111. = 2.0               | ) i i yai/i |                              |                |                            | (Other, Sp         | Decity)      |                   |
| Start Purge Tir              |                               |                          |                            |             |                              |                |                            |                    |              |                   |
| Start Purge Til              |                               | 0935                     |                            |             | ate units                    |                | ı                          |                    | 1            |                   |
| Elapsed<br>Time              | Depth To<br>Water<br>(ft bmp) | Temperature<br>(Celsius) | pH (SU)                    | Cond        | ecific<br>luctivity<br>S/cm) | ORP<br>(mV)    | Dissolved<br>Oxygen (mg/l) | Turbidi<br>(NTU)   | •            | w Rate<br>Il/min) |
| 0935                         | 18.98                         | 17.14                    | 3.17                       | 0.          | .209                         | 298            | 4.59                       | 351                |              | -                 |
| 0940                         | 19.00                         | 16.19                    | 2.97                       | 0.          | .208                         | 392            | 4.96                       | 258                |              | -                 |
| 0945                         | 19.00                         | 19.64                    | 2.88                       | 0.          | .180                         | 377            | 4.38                       | 380                |              | -                 |
| 0950                         | 19.00                         | 18.17                    | 3.02                       | 0.          | .179                         | 339            | 3.58                       | 243                |              | -                 |
| 0955                         | 19.00                         | 18.20                    | 3.05                       | 0.          | .175                         | 336            | 3.77                       | 640                |              | -                 |
| 1000                         | 19.00                         | 17.90                    | 3.01                       | 0.          | .182                         | 341            | 3.85                       | 640                |              |                   |
| 1005                         | 19.00                         | 17.89                    | 3.04                       | 0.          | .178                         | 340            | 3.71                       | 896                |              | -                 |
| 1010                         | 19.00                         | 17.70                    | 3.02                       | 0.          | .173                         | 347            | 4.02                       | 531                |              | -                 |
|                              |                               |                          |                            |             |                              |                |                            |                    |              |                   |
|                              |                               |                          |                            |             |                              |                |                            |                    |              |                   |
|                              |                               |                          |                            | <u> </u>    |                              |                |                            |                    |              |                   |
|                              |                               |                          |                            |             |                              |                |                            |                    |              |                   |
|                              |                               |                          |                            |             |                              |                |                            |                    |              |                   |
|                              |                               |                          |                            | <u> </u>    |                              |                |                            |                    |              |                   |
|                              |                               |                          |                            |             |                              |                |                            |                    |              |                   |
|                              |                               |                          |                            | <u> </u>    |                              |                |                            |                    |              |                   |
|                              |                               |                          |                            | <u> </u>    |                              |                |                            |                    |              |                   |
|                              |                               |                          |                            |             |                              |                |                            |                    |              |                   |
| Stabilization                | Δ ≤ 0.3'                      | ± 3%                     | ± 0.1                      | ±           | 3%                           | ± 10 mV        | ± 10%                      | ± 10%              | 6 100 ≤      | ≤ X ≤ 500         |
| End Purge Tim                | ne: <u>10</u>                 | )15                      |                            |             |                              |                |                            |                    |              |                   |
| Water sample                 | <b>)</b> :                    |                          |                            |             |                              |                |                            |                    |              |                   |
| Time collected               |                               |                          |                            | Total v     |                              | purged water r |                            | 2 gal              |              | _                 |
| Physical appe                | earance at start              | 1.07.11                  |                            |             |                              | Physical appo  | earance at samp            | _                  |              |                   |
|                              | Color Clo Odor Nor            | udy/Yellow               | -                          |             |                              |                | Color<br>Odor              | Clear/Yell<br>None | owish        |                   |
| Sheen/Free Pr                |                               |                          | •<br>•                     |             |                              | Sheen/F        | ree Product                | None               |              |                   |
| Analytical Par               | rameters:                     |                          |                            |             |                              |                |                            |                    |              |                   |
| Container S                  | Size Cor                      | ntainer Type             | # Collect                  | ted         | Field                        | l Filtered     | Preservat                  | ive                | Lat          | 0                 |
| 40 ml                        |                               | Vial                     | 3                          |             |                              | N              | HCL                        |                    | Accut        |                   |
| 500 ml                       |                               | P                        | 2                          | <del></del> |                              | N/Y            | None                       |                    | Accut        |                   |
| 500 ml                       |                               | Р                        | 1                          | $-\!\!\!+$  |                              | N              | HNO3                       |                    | Accut        | est               |
|                              |                               |                          | +                          | -+          |                              |                |                            | +                  |              |                   |

Turbidity not stabilizing due to recharge of well for small water level

| <b>6</b> 0                                                                           | BRIEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 GERE                           |               | Low FI                              | ow Grou                      | nd Water S                 | Sampling           | Log                   |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|-------------------------------------|------------------------------|----------------------------|--------------------|-----------------------|
| Date:                                                                                | 10/16/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Persor                           | nnel:         | D. M                                | ongiardo                     | Weather:                   | Clear 5            | 0's                   |
| Site Name:                                                                           | Evor Phillips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pump/                            | Controller ID |                                     |                              | -<br>Well #:               | ISCO-M             | W-5                   |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                | ing Method:   |                                     | <i></i> 002002<br>w-Flow     | _                          |                    |                       |
|                                                                                      | Old Bridge, NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                | Ü             |                                     |                              | Project #:                 | 5130               | <u>8</u>              |
|                                                                                      | uip. Used (include                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : ID#): Horrida                  | a U-52 #      |                                     | 99/20002                     |                            |                    |                       |
| Well informati                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |               | ter Multipliers                     |                              | * Measuremen               | 1                  |                       |
| Depth of Well*                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.60 ft.                        | 2 in. = 0.16  | •                                   |                              | X                          | Top of Well C      | •                     |
| Depth to Wate                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.85 ft.                        | 4 in. = 0.6   | •                                   |                              |                            | Top of Protec      | tive Casing           |
| Length of Wate                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.75 ft.                         | 6 in. = 1.46  | •                                   |                              |                            |                    |                       |
| Pump Intake D<br>Well Diameter:                                                      | · —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft.<br>2 in.                     | 8 in. = 2.6°  | 11 gal/ft                           |                              |                            | (Other, Specif     |                       |
| Start Purge Tir                                                                      | me:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1005                             |               | indicate units                      |                              |                            |                    |                       |
| Elapsed<br>Time                                                                      | Depth To<br>Water<br>(ft bmp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Temperature<br>(Celsius)         | pH (SU)       | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)                  | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU) | Flow Rate<br>(ml/min) |
| 1005                                                                                 | 22.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.85                            | 7.89          | 0.502                               | -5                           | 1.44                       | 803                | 400                   |
| 1010                                                                                 | 23.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.10                            | 6.45          | 0.448                               | 37                           | 1.02                       | 712                | 400                   |
| 1015                                                                                 | 23.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.09                            | 5.37          | 0.414                               | 57                           | 0.21                       | 210                | 400                   |
| 1020                                                                                 | 23.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.06                            | 5.31          | 0.411                               | 57                           | 0.15                       | 181                | 400                   |
| 1025                                                                                 | 23.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.06                            | 5.18          | 0.402                               | 59                           | 0.00                       | 90.4               | 400                   |
| 1030                                                                                 | 23.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.22                            | 5.16          | 0.400                               | 59                           | 0.00                       | 67.4               | 400                   |
| 1035                                                                                 | 23.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.25                            | 5.12          | 0.399                               | 61                           | 0.00                       | 39.3               | 400                   |
| 1040                                                                                 | 23.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.12                            | 5.11          | 0.395                               | 61                           | 0.00                       | 21.7               | 400                   |
| 1045                                                                                 | 23.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.08                            | 5.10          | 0.392                               | 61                           | 0.00                       | 13.7               | 400                   |
| 1050                                                                                 | 23.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.21                            | 5.09          | 0.391                               | 61                           | 0.00                       | 8.6                | 400                   |
| 1055                                                                                 | 23.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.25                            | 5.09          | 0.392                               | 61                           | 0.00                       | 2.3                | 400                   |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |               |                                     |                              |                            |                    | 1                     |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |               |                                     |                              |                            |                    |                       |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |               |                                     |                              |                            |                    |                       |
| Stabilization                                                                        | Δ ≤ 0.3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ± 3%                             | ± 0.1         | ± 3%                                | ± 10 mV                      | ± 10%                      | ± 10%              | 100 ≤ X ≤ 500         |
| End Purge Tim Water sample Time collected Physical appe Sheen/Free Pr Analytical Par | 1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100   1100 | 100<br>-<br>llowish Cloudy<br>ne |               | Total volume of                     | purged water<br>Physical app |                            | 20 L               |                       |
| Container S                                                                          | Size Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ntainer Type                     | # Collecte    | ed Field                            | Filtered                     | Preservat                  | tive               | Lab                   |
| 40 ml                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vial                             | 3             |                                     | N                            | HCL                        |                    | Accutest              |

| •              |                |             |                |              |          |
|----------------|----------------|-------------|----------------|--------------|----------|
| Container Size | Container Type | # Collected | Field Filtered | Preservative | Lab      |
| 40 ml          | Vial           | 3           | N              | HCL          | Accutest |
| 500 ml         | Р              | 2           | N/Y            | None         | Accutest |
| 500 ml         | Р              | 1           | N              | HNO3         | Accutest |
|                |                |             |                |              |          |
|                |                |             |                |              |          |
|                |                |             |                |              |          |
| Notes:         |                |             |                |              |          |

| Notes: |  |  |
|--------|--|--|
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |



|                                                                  | BRIEN                         | 6 GERE                  |                      | Low FI                              | Low Flow Ground Water Sampling Log |                                               |                                    |                       |  |  |
|------------------------------------------------------------------|-------------------------------|-------------------------|----------------------|-------------------------------------|------------------------------------|-----------------------------------------------|------------------------------------|-----------------------|--|--|
| Date:                                                            | 10/15/2015                    | Perso                   | nnel:                | D. M                                | ongiardo                           | Weather:                                      | Sunny 6                            | 60's                  |  |  |
| Site Name:                                                       | Evor Phillips                 | —<br>S Pump             | /Controller IE       | D#: Monsoon /                       | # 30731                            | Well #:                                       | ISCO-MW-7                          |                       |  |  |
| Site Location:                                                   | Old Bridge, N                 | <del>—</del><br>IJ Samp | ling Method:         | Lov                                 | w-Flow                             | Project #:                                    | 51308                              | <del></del>           |  |  |
| Monitoring Equ                                                   | uip. Used (inclu              |                         | a U-52 #21061/192    |                                     | 61/19245                           | _                                             |                                    |                       |  |  |
| Well informat                                                    |                               | ,                       |                      | eter Multipliers                    |                                    | * Measuremer                                  | nts taken from                     |                       |  |  |
| Depth of Well*                                                   |                               | 22.60 ft.               | 2 in. = 0.163 gal/ft |                                     |                                    | X Top of Well Casing                          |                                    | asina                 |  |  |
| Depth to Wate                                                    | _                             | 19.90 ft.               | 4 in. = 0.6          | •                                   |                                    | Top of Protective Cas                         |                                    | ŭ                     |  |  |
| Length of Wat                                                    | er Column:                    | 2.7 ft.                 | 6 in. = 1.4          | 69 gal/ft                           | gal/ft                             |                                               | ]                                  |                       |  |  |
| Pump Intake D                                                    | Depth:                        | ft.                     | 8 in. = 2.6          | 11 gal/ft                           |                                    |                                               | (Other, Specify                    | y)                    |  |  |
| Well Diameter                                                    | ·<br>·                        | <u>2</u> in.            |                      |                                     |                                    |                                               |                                    |                       |  |  |
| Start Purge Ti                                                   | me:                           | 1230                    |                      | indicate units                      |                                    |                                               |                                    |                       |  |  |
| Elapsed<br>Time                                                  | Depth To<br>Water<br>(ft bmp) | Temperature (Celsius)   | pH (SU)              | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)                        | Dissolved<br>Oxygen (mg/l)                    | Turbidity<br>(NTU)                 | Flow Rate<br>(ml/min) |  |  |
| 1235                                                             | 21.13                         | 17.72                   | 6.80                 | 4.05                                | 257                                | 1.03                                          | 1000                               | 500                   |  |  |
| 1240                                                             | 21.38                         | 17.84                   | 6.74                 | 3.98                                | 252                                | 2.07                                          | 1000                               | 500                   |  |  |
| 1245                                                             | 21.42                         | 17.81                   | 6.73                 | 3.73                                | 247                                | 1.62                                          | 1000                               | 500                   |  |  |
| 1250                                                             | 21.30                         | 17.67                   | 6.72                 | 2.76                                | 237                                | 1.94                                          | 1000                               | 500                   |  |  |
| 1255                                                             | 21.32                         | 17.54                   | 6.71                 | 2.84                                | 237                                | 1.54                                          | 1000                               | 500                   |  |  |
| 1300                                                             | 21.17                         | 17.61                   | 6.71                 | 2.89                                | 238                                | 1.42                                          | 1000                               | 500                   |  |  |
| 1305                                                             | 21.24                         | 17.61                   | 6.70                 | 2.96                                | 243                                | 1.29                                          | 615                                | 500                   |  |  |
| 1310                                                             | 21.29                         | 17.77                   | 6.68                 | 3.60                                | 240                                | 1.31                                          | 951                                | 500                   |  |  |
| 1315                                                             | 21.60                         | 17.79                   | 6.67                 | 3.53                                | 240                                | 1.45                                          | 478                                | 500                   |  |  |
| 1320                                                             | 21.29                         | 17.92                   | 6.66                 | 3.86                                | 236                                | 1.26                                          | 1000                               | 500                   |  |  |
| 1325                                                             | 21.36                         | 17.60                   | 6.65                 | 3.84                                | 243                                | 1.63                                          | 310                                | 500                   |  |  |
| 1330                                                             | 21.33                         | 17.81                   | 6.64                 | 3.20                                | 243                                | 1.81                                          | 537                                | 500                   |  |  |
| 1335                                                             | 21.08                         | 18.01                   | 6.64                 | 3.13                                | 243                                | 2.43                                          | 627                                | 500                   |  |  |
| 1340                                                             | 21.16                         | 17.77                   | 6.64                 | 2.87                                | 249                                | 1.88                                          | 317                                | 500                   |  |  |
| 1345                                                             | 21.20<br>21.21                | 17.72<br>17.79          | 6.63                 | 2.98                                | 249<br>250                         | 1.36                                          | 254<br>188                         | 500<br>500            |  |  |
| 1350<br>1355                                                     | 21.21                         | 17.79                   | 6.63<br>6.63         | 3.09<br>3.09                        | 248                                | 1.39<br>1.29                                  | 198                                | 500                   |  |  |
| 1400                                                             | 21.43                         | 17.70                   | 6.63                 | 3.20                                | 244                                | 1.44                                          | 159                                | 500                   |  |  |
| 1400                                                             | 21.43                         | 17.70                   | 0.03                 | 3.20                                | 244                                | 1.44                                          | 139                                | 300                   |  |  |
| Stabilization                                                    | Δ ≤ 0.3'                      | ± 3%                    | ± 0.1                | ± 3%                                | ± 10 mV                            | ± 10%                                         | ± 10%                              | 100 ≤ X ≤ 500         |  |  |
| End Purge Tin<br>Water sample<br>Time collected<br>Physical appe | earance at star<br>Color      |                         | -                    | Total volume of                     | -                                  | removed:<br>pearance at samp<br>Color<br>Odor | 45 L  pling  Clearish/Yellor  None | w                     |  |  |
| Sheen/Free Pi                                                    | - T                           | None                    | <b>-</b>             |                                     | Sheen/l                            | Free Product None                             |                                    |                       |  |  |
| Analytical Par                                                   |                               |                         |                      |                                     |                                    |                                               |                                    |                       |  |  |
| Container                                                        | Size C                        | Container Type          | # Collect            | ed Field                            | Filtered                           | Preservat                                     | ive                                | Lab                   |  |  |
| 40 ml                                                            |                               | Vial<br>P               | 3 2                  |                                     | <u>N</u><br>N / Y                  | HCL                                           |                                    | Accutest              |  |  |
| 500 ml                                                           |                               | P                       | 1                    | '                                   | N                                  | None<br>HNO3                                  |                                    | Accutest<br>Accutest  |  |  |
|                                                                  |                               |                         |                      |                                     |                                    |                                               |                                    | _                     |  |  |
|                                                                  |                               |                         |                      |                                     |                                    |                                               |                                    |                       |  |  |
| Notes:                                                           |                               |                         |                      |                                     |                                    |                                               |                                    |                       |  |  |



| E OBRIENO GERE  |                                                  |                                                  |                                                  | LOW FI                                           | Low Flow Ground Water Sampling Log               |                              |                                                  |                    |  |  |  |
|-----------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------|--------------------------------------------------|--------------------|--|--|--|
| Date:           | 10/15/2015                                       | Persor                                           | nnel:                                            | nel: D. Mongiardo                                |                                                  | Weather:                     | Sunny 60's                                       |                    |  |  |  |
| Site Name:      | Evor Phillips                                    | Pump                                             | /Controller ID                                   | D#: Monsoon /                                    | / # 30731                                        | Well #:                      | ISCO-MW-8                                        |                    |  |  |  |
| Site Location:  | Old Bridge, NJ                                   | Samp'                                            | ling Method:                                     | Lo                                               | w-Flow                                           | Project #:                   | 51308                                            | 8                  |  |  |  |
|                 | uip. Used (include                               | _                                                | oa U-52 #                                        |                                                  | 061/19245                                        | <i>- '</i>                   |                                                  |                    |  |  |  |
| Well informat   |                                                  | 71211).                                          |                                                  | eter Multipliers                                 | 1710210                                          | * Measuremen                 | ets taken from                                   |                    |  |  |  |
| Depth of Well*  |                                                  | 26.52 ft.                                        | 2 in. = 0.1                                      | ·                                                |                                                  | X                            | Top of Well Ca                                   | acina              |  |  |  |
| Depth to Wate   |                                                  | 24.03 ft.                                        | 4 in. = 0.1                                      | •                                                |                                                  |                              | Top of Protective Casing                         |                    |  |  |  |
| Length of Water |                                                  | ft.                                              | 6 in. = 1.4                                      | -                                                |                                                  |                              | 1 00 01 1 101001                                 | ive odding         |  |  |  |
| Pump Intake D   |                                                  | ft.                                              | 8 in. = 2.6                                      | •                                                |                                                  |                              | (Other, Specify                                  | y)                 |  |  |  |
| Well Diameter   | · —                                              | 2 in.                                            |                                                  | · ·                                              |                                                  |                              | 1,                                               | •                  |  |  |  |
| Start Purge Tir | me:                                              | 1435                                             |                                                  | indicate units                                   | <u>-                                    </u>     |                              |                                                  |                    |  |  |  |
| Elapsed<br>Time | Depth To<br>Water                                | Temperature<br>(Celsius)                         |                                                  | Specific<br>Conductivity                         | ORP<br>(mV)                                      | Dissolved<br>Oxygen (mg/l)   | Turbidity<br>(NTU)                               | Flow Rate (ml/min) |  |  |  |
|                 | (ft bmp)                                         |                                                  | pH (SU)                                          | (mS/cm)                                          | 1                                                |                              | 1                                                | , ,                |  |  |  |
| 1435            | 24.20                                            | 18.52                                            | 14.00                                            | 40.4                                             | 50                                               | 0.28                         | 518                                              | 350                |  |  |  |
| 1440            | 24.42                                            | 18.00                                            | 14.00                                            | 39.6                                             | 79                                               | 0.15                         | 219                                              | 350                |  |  |  |
| 1445            | 24.42                                            | 18.06                                            | 14.00                                            | 40.5                                             | 89                                               | 0.10                         | 164                                              | 350                |  |  |  |
| 1450            | 24.54                                            | 18.00                                            | 14.00                                            | 39.1                                             | 96                                               | 0.19                         | 147                                              | 350                |  |  |  |
| 1455            | 24.42                                            | 17.81                                            | 14.00                                            | 38.6                                             | 103                                              | 0.20                         | 107                                              | 350                |  |  |  |
| 1500            | 24.38                                            | 18.05                                            | 14.00                                            | 38.7                                             | 104                                              | 0.19                         | 104                                              | 350                |  |  |  |
| 1505            | 24.31                                            | 18.25                                            | 14.00                                            | 42.1                                             | 111                                              | 0.05                         | 71.5                                             | 350                |  |  |  |
| 1510            | 24.31                                            | 18.55                                            | 14.00                                            | 41.5                                             | 111                                              | 0.25                         | 86.5                                             | 350                |  |  |  |
| 1515            | 24.38                                            | 18.25                                            | 14.00                                            | 34.9                                             | 113                                              | 0.83                         | 33.5                                             | 350                |  |  |  |
| 1520            | 24.42                                            | 18.03                                            | 14.00                                            | 35.2                                             | 116                                              | 0.62                         | 16.4                                             | 350                |  |  |  |
| 1525            | 24.43                                            | 18.05                                            | 14.00                                            | 35.4                                             | 118                                              | 0.52                         | 9.4                                              | 350                |  |  |  |
| 1530            | 24.44                                            | 18.03                                            | 14.00                                            | 35.7                                             | 120                                              | 0.57                         | 5.1                                              | 350                |  |  |  |
|                 | <del> </del>                                     | <del> </del>                                     | <u> </u>                                         | <del> </del>                                     | <del>                                     </del> | +                            |                                                  | <del> </del>       |  |  |  |
|                 | <del>                                     </del> | <del> </del>                                     | <del>                                     </del> | <del>                                     </del> | <del> </del>                                     | +                            | <del> </del>                                     | +                  |  |  |  |
|                 | <del> </del>                                     | <del> </del>                                     | <del>                                     </del> | <del> </del>                                     | <del> </del>                                     | +                            | <del> </del>                                     | <del> </del>       |  |  |  |
|                 | <del> </del>                                     | <del>                                     </del> | <del> </del>                                     | <del>                                     </del> |                                                  | +                            | <del>                                     </del> | +                  |  |  |  |
|                 | <del>                                     </del> | <del>                                     </del> | +                                                | <del>                                     </del> |                                                  | +                            | <del>                                     </del> | <del> </del>       |  |  |  |
|                 | <del> </del>                                     | <del>                                     </del> | +                                                | <del>                                     </del> | <del>                                     </del> | +                            | <del>                                     </del> | <del> </del>       |  |  |  |
| Stabilization   | Δ ≤ 0.3'                                         | ± 3%                                             | ± 0.1                                            | ± 3%                                             | ± 10 mV                                          | ± 10%                        | ± 10%                                            | 100 ≤ X ≤ 500      |  |  |  |
|                 |                                                  |                                                  |                                                  |                                                  |                                                  |                              |                                                  | 1                  |  |  |  |
| End Purge Tim   |                                                  | 530                                              |                                                  |                                                  |                                                  |                              |                                                  |                    |  |  |  |
| Water sample    |                                                  | SCO-MW-8-1016                                    | -                                                | - · · · ,                                        |                                                  |                              | ·= ==•                                           |                    |  |  |  |
| Time collected  |                                                  | -                                                |                                                  | Total volume of                                  |                                                  | removed:<br>pearance at samp | 19.25 L                                          |                    |  |  |  |
| Pilysical appe  | earance at start Color Clo                       | oudy Brownish/Yel                                | llow                                             |                                                  | Pilysical app                                    | color                        | Clear Yellow                                     |                    |  |  |  |
|                 | Odor Nor                                         |                                                  |                                                  |                                                  |                                                  | Odor                         | None                                             | -                  |  |  |  |
| Sheen/Free Pr   |                                                  |                                                  | _                                                |                                                  | Sheen/                                           | Free Product                 | None                                             | <u>.</u><br>_      |  |  |  |
| Analytical Par  | rameters:                                        |                                                  |                                                  |                                                  |                                                  |                              |                                                  |                    |  |  |  |
| Container S     |                                                  | ntainer Type                                     | # Collect                                        | ted Field                                        | d Filtered                                       | Preservat                    | ive                                              | Lab                |  |  |  |
| 40 ml           |                                                  | Vial                                             | 3                                                |                                                  | N                                                | HCL                          |                                                  | Accutest           |  |  |  |
| 500 ml          |                                                  | P                                                | 2                                                | '                                                | N/Y                                              | None                         |                                                  | Accutest           |  |  |  |
| 500 ml          |                                                  | Р                                                | 1                                                |                                                  | N                                                | HNO3                         |                                                  | Accutest           |  |  |  |
| <u> </u>        |                                                  |                                                  | ┼──                                              |                                                  |                                                  | <del> </del>                 |                                                  |                    |  |  |  |
|                 |                                                  |                                                  | +                                                | <del></del>                                      |                                                  | +                            | <del></del>                                      |                    |  |  |  |
| Notes:          |                                                  |                                                  |                                                  |                                                  |                                                  |                              |                                                  |                    |  |  |  |
| 110.00.         |                                                  |                                                  |                                                  |                                                  |                                                  |                              |                                                  |                    |  |  |  |
|                 |                                                  |                                                  |                                                  | -                                                |                                                  |                              |                                                  |                    |  |  |  |
|                 |                                                  |                                                  |                                                  |                                                  |                                                  |                              |                                                  |                    |  |  |  |
|                 |                                                  |                                                  |                                                  |                                                  |                                                  |                              |                                                  |                    |  |  |  |



O'BRIEN 5 GERE **Low Flow Ground Water Sampling Log** Date: 10/15/2015 Personnel: D. Mongiardo Weather: Sunny 50's ISCO-MW-9 Site Name: Evor Phillips Pump/Controller ID#: Monsoon / # 30731 Well #: Sampling Method: Site Location: Old Bridge, NJ Low-Flow Project #: 51308 Horriba U-52 # Monitoring Equip. Used (include ID#): 21061/19245 Well information: Well Diameter Multipliers Measurements taken from Depth of Well\*: 24.85 ft. 2 in. = 0.163 gal/ftΧ Top of Well Casing 22.26 ft. Depth to Water\*: 4 in. = 0.653 gal/ftTop of Protective Casing Length of Water Column: 2.59 ft. 6 in. = 1.469 gal/ft 8 in. = 2.611 gal/ft Pump Intake Depth: ft. (Other, Specify) 2 in. Well Diameter: Start Purge Time: 1105 indicate units Depth To Specific **Elapsed Temperature** ORP Dissolved **Turbidity** Flow Rate Conductivity Water Time (Celsius) (mV) Oxygen (mg/l) (NTU) (ml/min) (mS/cm) (ft bmp) pH (SU) 1110 22.96 15.99 5.27 1.93 280 1.35 403 450 15.94 1.93 67.4 1115 22.90 5.21 314 0.92 450 1120 23.00 15.90 5.13 1.66 333 0.84 12.5 450 1125 23.09 15.87 5.20 1.75 339 0.75 8.2 450 1130 23.09 15.83 5.19 1.82 343 0.72 7.7 450 1135 23.09 15.83 5.25 1.78 346 0.72 6.6 450 1140 23.09 15.82 5.27 1.74 347 0.67 4.8 450 1145 23.06 15.87 5.35 1.80 347 0.63 5.9 450 Stabilization  $\Delta \leq 0.3$ ± 3%  $\pm 0.1$ ± 3% ± 10 mV ± 10% ± 10%  $100 \le X \le 500$ End Purge Time: 1145 2RND3-ISCO-MW-9-101515 Water sample: Time collected: Total volume of purged water removed: 1145 18 L Physical appearance at start Physical appearance at sampling Color Clear/Yellowish Tint Clear Color Odor None Odor None Sheen/Free Product None Sheen/Free Product None Analytical Parameters: Container Size Container Type # Collected Field Filtered Preservative Lab 40 ml Vial Ν HCL Accutest 500 ml Ρ 2 N/YNone Accutest Ρ 500 ml 1 Ν HNO3 Accutest Notes: **DUP Taken here** 2RND3-DUP-101515

| 6                                                       | BRIEN                         | 8 GERE                |               | Low FI                              | ow Groui       | nd Water S                 | amplin           | g Log                        |
|---------------------------------------------------------|-------------------------------|-----------------------|---------------|-------------------------------------|----------------|----------------------------|------------------|------------------------------|
| Date:                                                   | 10/16/2015                    | Persor                | nnel:         | K.T                                 | eitsma         | Weather:                   | 55°              | 'Clear                       |
| Site Name:                                              | Evor Phillips                 | ==<br>S Pump/         | Controller ID | #: Monsoon /                        | # 030731       | Well #:                    | MV               | V-10S                        |
| Site Location:                                          |                               | <del></del>           | ing Method:   |                                     | w-Flow         | Project #:                 |                  | 1308                         |
| Monitoring Equ                                          |                               |                       | a U-52 #      | -                                   | 45/21061       | 1 10,000                   |                  |                              |
|                                                         | '                             | ide ID#). Homba       |               |                                     | +5/21001       | * Magaziraman              | to tokon fro     |                              |
| Well informating the Depth of Well*                     |                               | 31.30 ft.             | 2 in. = 0.10  | ter Multipliers                     |                | * Measuremen               | Top of We        |                              |
| Depth to Wate                                           | _                             | 20.41 ft.             | 4 in. = 0.6   | J                                   |                | ^                          |                  | en Casing<br>etective Casing |
| Length of Wate                                          | _                             | ft.                   | 6 in. = 1.4   | •                                   |                |                            | TOP OF TO        | Acoust Casing                |
| Pump Intake D                                           | _                             | ft.                   | 8 in. = 2.6   | •                                   |                |                            | (Other, Sp       | ecify)                       |
| Well Diameter:                                          | -<br>-                        | 4 in.                 |               |                                     |                |                            |                  |                              |
| Start Purge Tir                                         | me:                           | 0845                  |               | indicate units                      |                |                            |                  |                              |
| Elapsed<br>Time                                         | Depth To<br>Water<br>(ft bmp) | Temperature (Celsius) | pH (SU)       | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)    | Dissolved<br>Oxygen (mg/l) | Turbidi<br>(NTU) | -                            |
| 0845                                                    | 20.45                         | 15.86                 | 4.99          | 0.518                               | 388            | 6.92                       | 43.2             | 400                          |
| 0850                                                    | 20.45                         | 16.66                 | 5.03          | 0.524                               | 393            | 6.78                       | 58.1             | 400                          |
| 0855                                                    | 20.45                         | 16.99                 | 4.88          | 0.164                               | 400            | 3.40                       | 35.0             | 400                          |
| 0900                                                    | 20.45                         | 17.12                 | 4.93          | 0.210                               | 405            | 2.98                       | 48.0             | 400                          |
| 0905                                                    | 20.45                         | 17.21                 | 4.99          | 0.225                               | 406            | 2.32                       | 43.4             | 400                          |
| 0910                                                    | 20.45                         | 17.03                 | 5.03          | 0.227                               | 410            | 2.05                       | 54.6             | 400                          |
| 0915                                                    | 20.45                         | 16.54                 | 5.23          | 0.547                               | 422            | 0.89                       | 89.4             | 400                          |
| 0920                                                    | 20.45                         | 17.07                 | 5.22          | 0.547                               | 403            | 0.41                       | 77.4             | 400                          |
| 0925                                                    | 20.45                         | 17.10                 | 5.22          | 0.546                               | 407            | 0.31                       | 64.8             | 400                          |
| 0930                                                    | 20.45                         | 17.17                 | 5.24          | 0.546                               | 412            | 0.26                       | 45.6             | 400                          |
| 0935                                                    | 20.45                         | 17.07                 | 5.25          | 0.540                               | 420            | 0.10                       | 25.9             | 400                          |
| 0940                                                    | 20.45                         | 17.26                 | 5.24          | 0.528                               | 421            | 0.27                       | 18.8             | 400                          |
| 0945                                                    | 20.45                         | 17.06                 | 5.26          | 0.523                               | 421            | 0.00                       | 9.3              | 400                          |
| 0950                                                    | 20.45                         | 16.89                 | 5.26          | 0.524                               | 422            | 0.00                       | 10.1             | 400                          |
|                                                         |                               |                       |               |                                     |                |                            |                  |                              |
|                                                         |                               |                       |               |                                     |                |                            |                  |                              |
| 0. 1 111                                                | 4 < 0.2                       | 00/                   | 0.4           | 00/                                 | 40 1/          | 400/                       | 400/             | 100 4 7 4 500                |
| Stabilization                                           | Δ ≤ 0.3'                      | ± 3%                  | ± 0.1         | ± 3%                                | ± 10 mV        | ± 10%                      | ± 10%            | 100 ≤ X ≤ 500                |
| End Purge Tim Water sample Time collected Physical appe | 2RND3                         |                       |               | 10S-101615-MS<br>Total volume of    | purged water r |                            | 28 L             |                              |
| , appo                                                  |                               | Clear                 |               |                                     | )              | Color                      | Clear            |                              |
|                                                         | _                             | None                  | •             |                                     |                | Odor                       | None             | <del></del>                  |
| Sheen/Free Pr                                           | oduct 1                       | None                  | •             |                                     | Sheen/F        | ree Product                | None             | _ <del>_</del>               |
| Analytical Par                                          | ameters:                      |                       |               |                                     |                |                            |                  |                              |
| Container S                                             | Size (                        | Container Type        | # Collecte    | ed Field                            | l Filtered     | Preservat                  | ive              | Lab                          |
| 40 ml                                                   |                               | Vial                  | 10            |                                     | N              | HCL                        | [                | Accutest                     |
| 500 ml                                                  |                               | P                     | 6             | 1                                   | N/Y            | None                       |                  | Accutest                     |

| Notes: | Pump clogging due to pieces of vegetation in well |  |
|--------|---------------------------------------------------|--|
|        |                                                   |  |
|        |                                                   |  |
|        |                                                   |  |
|        |                                                   |  |

| Date:              | 10/15/2015 Personr            |                          | nnel:                     | К.Т                                 | Teitsma                   | Weather:                   | 55°F Cl                  | 55°F Clear         |  |
|--------------------|-------------------------------|--------------------------|---------------------------|-------------------------------------|---------------------------|----------------------------|--------------------------|--------------------|--|
| Site Name:         | Evor Phillips                 | Pump/                    | /Controller ID:           | )#: Monsoon /                       | # 032552                  | <br>Well #:                | MW-14SS                  |                    |  |
| Site Location:     | Old Bridge, NJ                | Sampl                    | ling Method:              | Lo'                                 | w-Flow                    | Project #: 51308           |                          | <del></del><br>8   |  |
|                    | uip. Used (include            | ' '                      | a U-52 #                  |                                     | 99/20002                  | <u> </u>                   |                          |                    |  |
|                    |                               |                          | Well Diameter Multipliers |                                     | * Measurements taken from |                            |                          |                    |  |
| Depth of Well*:    |                               | 17.45 ft.                | 2 in. = 0.16              | •                                   | ı                         | Х                          | Top of Well Casing       |                    |  |
| Depth to Water     |                               | 6.92 ft.                 | 4 in. = 0.65              | •                                   | i                         |                            | Top of Protective Casing |                    |  |
| Length of Wate     |                               | ft.                      | 6 in. = 1.46              | •                                   | ı                         |                            |                          |                    |  |
| Pump Intake Depth: |                               | 10 ft.                   | 8 in. = 2.61              | •                                   | 1                         |                            | (Other, Specify          | y)                 |  |
| Well Diameter:     |                               | 4 in.                    |                           | ŭ                                   | ı                         |                            | 1,- , , -                | ,,                 |  |
| Start Purge Tin    | ne:                           | 0946                     |                           | indicate units                      |                           |                            |                          |                    |  |
| Elapsed<br>Time    | Depth To<br>Water<br>(ft bmp) | Temperature<br>(Celsius) | pH (SU)                   | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)               | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU)       | Flow Rate (ml/min) |  |
| 0946               | 7.06                          | 16.59                    | 6.15                      | 0.698                               | 363                       | 3.55                       | 89.9                     | 350                |  |
| 0950               | 7.06                          | 16.75                    | 5.98                      | 0.678                               | 406                       | 3.29                       | 84.2                     | 350                |  |
| 0955               | 7.06                          | 16.83                    | 6.00                      | 0.667                               | 438                       | 2.97                       | 82.5                     | 350                |  |
| 1000               | 7.06                          | 16.70                    | 6.00                      | 0.656                               | 456                       | 2.67                       | 78.1                     | 350                |  |
| 1005               | 7.06                          | 16.75                    | 5.97                      | 0.642                               | 467                       | 3.08                       | 81.1                     | 350                |  |
| 1010               | 7.06                          | 16.74                    | 5.95                      | 0.622                               | 477                       | 3.07                       | 75.5                     | 350                |  |
| 1015               | 7.06                          | 16.65                    | 5.95                      | 0.620                               | 483                       | 3.07                       | 75.3                     | 350                |  |
| 1020               | 7.06                          | 16.60                    | 5.94                      | 0.621                               | 484                       | 3.08                       | 71.8                     | 350                |  |
|                    |                               |                          |                           |                                     |                           |                            |                          |                    |  |
|                    |                               |                          |                           |                                     |                           |                            |                          |                    |  |
|                    |                               |                          |                           |                                     |                           |                            |                          |                    |  |
|                    |                               |                          |                           |                                     |                           | <u> </u>                   |                          |                    |  |
|                    |                               |                          |                           |                                     |                           |                            |                          |                    |  |
|                    |                               |                          |                           |                                     |                           |                            |                          |                    |  |
|                    |                               |                          |                           |                                     |                           |                            |                          |                    |  |
|                    |                               |                          |                           |                                     |                           |                            |                          |                    |  |
|                    |                               |                          |                           |                                     |                           |                            |                          |                    |  |
|                    |                               |                          |                           |                                     |                           |                            |                          |                    |  |
|                    |                               |                          |                           |                                     |                           | <u> </u>                   |                          |                    |  |
| Stabilization      | Δ ≤ 0.3'                      | ± 3%                     | ± 0.1                     | ± 3%                                | ± 10 mV                   | ± 10%                      | ± 10%                    | 100 ≤ X ≤ 50       |  |
| End Purge Tim      | ne: 10                        | )27                      |                           |                                     |                           |                            |                          |                    |  |
| Water sample       |                               | 1W-14SS-101515           |                           |                                     |                           |                            |                          |                    |  |
| Time collected     |                               |                          | •                         | Total volume of                     | . •                       |                            | 14 L                     |                    |  |
|                    | earance at start              |                          |                           |                                     | Physical app              | pearance at samp           |                          |                    |  |
|                    | Color Clea                    |                          | -                         |                                     |                           | Color<br>Odor              | Clear<br>None            | =                  |  |
|                    | oduct Non                     | ie                       | -                         |                                     | <b>.</b> ,                | Free Product               | None                     | -                  |  |

# Analytical Parameters: Container Size Container Type # Collected Field Filtered Preservative Lab 40 ml Vial 3 N HCL Accutest 500 ml P 2 N / Y None Accutest 500 ml P 1 N HNO3 Accutest Notes:

| _                | Evor Phillips Old Bridge, NJ           | -<br>Pump/                 |              |                                     | eitsma      | Weather:                   | 55°F Cle                 | <u> </u>              |
|------------------|----------------------------------------|----------------------------|--------------|-------------------------------------|-------------|----------------------------|--------------------------|-----------------------|
| _                | Old Bridge, NJ                         | lame: Evor Phillips Pump/C |              | 0#: Monsoon /                       | # 032552    | Well #:                    | MW-14SD                  |                       |
| _                | Site Location: Old Bridge, NJ Sampling |                            | ing Method:  | Lov                                 | w-Flow      | Project #: 51308           |                          | <del></del>           |
|                  | p. Used (include                       | -                          | a U-52 #     |                                     | 99/20002    | <b>-</b> ',                |                          |                       |
|                  |                                        | Well Diameter Multipliers  |              | * Measurements taken from           |             |                            |                          |                       |
| Depth of Well*:  |                                        | 17.45 ft.                  | 2 in. = 0.16 |                                     | •           |                            | Top of Well Casing       |                       |
| Depth to Water*  | ·-                                     | 6.92 ft.                   | 4 in. = 0.65 | •                                   | l           | X                          | Top of Protective Casing |                       |
| Length of Water  |                                        | ft.                        | 6 in. = 1.46 | •                                   | l           |                            |                          |                       |
| Pump Intake De   |                                        | 15 ft.                     | 8 in. = 2.61 | •                                   | Ì           |                            | (Other, Specify          | y)                    |
|                  |                                        | 4 in.                      |              | ŭ                                   | l           | (2000)                     |                          |                       |
| Start Purge Time | e:                                     | 1045                       |              | indicate units                      |             |                            |                          |                       |
| Elapsed<br>Time  | Depth To<br>Water<br>(ft bmp)          | Temperature<br>(Celsius)   | pH (SU)      | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV) | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU)       | Flow Rate<br>(ml/min) |
| 1045             | 7.10                                   | 16.05                      | 6.18         | 0.681                               | 468         | 2.49                       | 544                      | 350                   |
| 1050             | 7.10                                   | 15.97                      | 6.09         | 0.665                               | 466         | 2.39                       | 280                      | 350                   |
| 1055             | 7.10                                   | 16.05                      | 6.03         | 0.645                               | 482         | 2.31                       | 174                      | 400                   |
| 1100             | 7.10                                   | 16.03                      | 6.00         | 0.628                               | 489         | 2.59                       | 109                      | 400                   |
| 1105             | 7.10                                   | 16.15                      | 5.97         | 0.607                               | 496         | 2.74                       | 73.3                     | 400                   |
| 1110             | 7.10                                   | 16.22                      | 5.96         | 0.595                               | 499         | 2.84                       | 66.3                     | 400                   |
| 1115             | 7.10                                   | 16.21                      | 5.96         | 0.593                               | 500         | 2.87                       | 62.1                     | 400                   |
| 1120             | 7.10                                   | 16.22                      | 5.95         | 0.593                               | 502         | 2.90                       | 59.2                     | 400                   |
|                  |                                        |                            |              |                                     |             |                            |                          |                       |
|                  |                                        |                            |              |                                     |             |                            |                          |                       |
|                  |                                        |                            |              |                                     |             |                            |                          |                       |
|                  |                                        |                            |              |                                     |             |                            |                          |                       |
|                  |                                        |                            |              |                                     |             |                            |                          |                       |
|                  |                                        |                            |              |                                     |             |                            |                          |                       |
|                  |                                        |                            |              |                                     |             |                            |                          |                       |
|                  |                                        |                            |              |                                     |             |                            |                          |                       |
|                  |                                        |                            |              |                                     |             |                            |                          |                       |
|                  |                                        |                            |              |                                     |             |                            |                          |                       |
|                  |                                        |                            |              |                                     |             | <u> </u>                   |                          |                       |
| Stabilization    | Δ ≤ 0.3'                               | ± 3%                       | ± 0.1        | ± 3%                                | ± 10 mV     | ± 10%                      | ± 10%                    | $100 \le X \le 50$    |

# Analytical Parameters: Container Size Container Type # Collected Field Filtered Preservative Lab 40 ml Vial 3 N HCL Accutest 500 ml P 2 N / Y None Accutest 500 ml P 1 N HNO3 Accutest Notes:



|                               |                                                          |                       |               |                                     |              | Sund Water Sampling Log                                      |                                |                       |  |
|-------------------------------|----------------------------------------------------------|-----------------------|---------------|-------------------------------------|--------------|--------------------------------------------------------------|--------------------------------|-----------------------|--|
| Date:                         | 11/13/2015                                               | Persor                | nnel:         | K.T                                 | eitsma       | Weather:                                                     | Sunny 50's<br>ISCO-MW-1        |                       |  |
| Site Name:                    | Evor Phillips                                            | Pump/                 | Controller ID | #: Monsoon /                        | # 030729     | Well #:                                                      |                                |                       |  |
| Site Location:                | Old Bridge, NJ                                           | -<br>Sampl            | ing Method:   | Lov                                 | Low-Flow     |                                                              | 51308                          |                       |  |
|                               | ip. Used (include                                        | _                     | a U-52 #      | 2128                                | 34/21780     | _ '                                                          |                                |                       |  |
| Well informat                 | <u> </u>                                                 | ,                     |               | ter Multipliers                     |              | * Measuremer                                                 | nts taken from                 |                       |  |
| Depth of Well*                |                                                          | 31.54 ft.             | 2 in. = 0.1   | ·                                   |              | X                                                            | Top of Well Ca                 | asina                 |  |
| Depth to Wate                 |                                                          | 21.69 ft.             | 4 in. = 0.6   | •                                   |              |                                                              | Top of Protect                 | -                     |  |
| Length of Wate                |                                                          | ft.                   | 6 in. = 1.4   | •                                   |              |                                                              |                                |                       |  |
| Pump Intake D                 |                                                          | 26 ft.                | 8 in. = 2.6   | -                                   | •            |                                                              | (Other, Specify)               |                       |  |
| Well Diameter:                |                                                          | 2 in.                 |               |                                     |              |                                                              | _                              |                       |  |
| Start Purge Tir               | ne:                                                      | 1035                  |               | indicate units                      |              |                                                              |                                |                       |  |
| Elapsed<br>Time               | Depth To<br>Water<br>(ft bmp)                            | Temperature (Celsius) | pH (SU)       | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)  | Dissolved<br>Oxygen (mg/l)                                   | Turbidity<br>(NTU)             | Flow Rate<br>(ml/min) |  |
| 1040                          | 21.68                                                    | 14.95                 | 5.95          | 0.323                               | 242          | 0.00                                                         | 712                            | 250                   |  |
| 1045                          | 21.68                                                    | 15.40                 | 5.89          | 0.322                               | 228          | 0.00                                                         | 475                            | 250                   |  |
| 1050                          | 21.68                                                    | 15.45                 | 5.87          | 0.322                               | 222          | 0.00                                                         | 255                            | 250                   |  |
| 1055                          | 21.68                                                    | 15.62                 | 5.87          | 0.323                               | 214          | 0.00                                                         | 96.9                           | 250                   |  |
| 1100                          | 21.68                                                    | 15.20                 | 5.88          | 0.322                               | 211          | 0.00                                                         | 34.1                           | 250                   |  |
| 1105                          | 21.68                                                    | 15.20                 | 5.86          | 0.323                               | 209          | 0.00                                                         | 23.2                           | 250                   |  |
| 1110                          | 21.68                                                    | 15.31                 | 5.86          | 0.323                               | 208          | 0.00                                                         | 13.0                           | 250                   |  |
| 1115                          | 21.68                                                    | 15.35                 | 5.87          | 0.323                               | 206          | 0.00                                                         | 7.0                            | 250                   |  |
| 1120                          | 21.68                                                    | 15.45                 | 5.87          | 0.324                               | 205          | 0.00                                                         | 9.8                            | 250                   |  |
| 1125                          | 21.68                                                    | 15.52                 | 5.85          | 0.324                               | 205          | 0.00                                                         | 4.2                            | 250                   |  |
|                               |                                                          |                       |               |                                     |              |                                                              |                                |                       |  |
|                               |                                                          |                       |               |                                     |              |                                                              |                                |                       |  |
| Stabilization                 | Δ ≤ 0.3'                                                 | ± 3%                  | ± 0.1         | ± 3%                                | ± 10 mV      | ± 10%                                                        | ± 10%                          | 100 ≤ X ≤ 50          |  |
| Sheen/Free Pr                 | 2RND4_ 1130  arance at start  Color Cle Odor No oduct No | ne                    | :15<br>-<br>- | Total volume of                     | Physical app | removed:<br>pearance at sam<br>Color<br>Odor<br>Free Product | ~3.5 gal pling Clear None None |                       |  |
| Analytical Par<br>Container S |                                                          | ntainer Type          | # Collect     | ed Field                            | Filtered     | Preserva                                                     | tivo                           | Lab                   |  |
| 40 ml                         | ,,20 00                                                  | Vial                  | # Collect     | i leiu                              | N            | HCL                                                          |                                | Accutest              |  |
| 500 ml                        |                                                          | P                     | 2             | 1                                   | N/Y          | None                                                         |                                | Accutest              |  |
| 500 ml                        |                                                          | Р                     | 1             |                                     | N            | HNO3                                                         |                                | Accutest              |  |
|                               |                                                          |                       |               |                                     |              |                                                              |                                |                       |  |
|                               |                                                          |                       |               |                                     |              |                                                              |                                |                       |  |
| Notes:                        |                                                          |                       | <u>I</u>      | <u> </u>                            |              | 1                                                            |                                |                       |  |
|                               |                                                          |                       |               |                                     |              |                                                              |                                |                       |  |
| 10100.                        |                                                          |                       |               |                                     |              |                                                              |                                |                       |  |



Date: 11/13/2015 Personnel: D. Mongiardo Weather: Clear 40's Site Name: Evor Phillips Pump/Controller ID#: Bailer Well #: ISCO-MW-2 Sampling Method: 51308 Site Location: Old Bridge, NJ Low-Flow Project #: Monitoring Equip. Used (include ID#): Horriba U-52 # 21074 Well information: Well Diameter Multipliers \* Measurements taken from Depth of Well\*: 23.55 ft. 2 in. = 0.163 gal/ftTop of Well Casing Depth to Water\*: 22.46 ft. 4 in. = 0.653 gal/ftTop of Protective Casing Length of Water Column: 1.09 ft. 6 in. = 1.469 gal/ft 8 in. = 2.611 gal/ft (Other, Specify) Pump Intake Depth: 18 ft. Well Diameter: 2 in. Start Purge Time: indicate units Depth To Specific **Elapsed Temperature ORP** Dissolved **Turbidity** Flow Rate Water Conductivity Time (Celsius) (mV) Oxygen (mg/l) (NTU) (ml/min) (ft bmp) (mS/cm) pH (SU) 1 Well Volume 23.02 8.98 21.3 264 0.61 800 2 Well Volume 23.09 9.63 19.8 284 1.24 800 3 Well Volume 23.09 9.64 19.0 287 1.30 800 Stabilization  $\Delta \leq 0.3$ ± 3%  $\pm 0.1$ ± 3% ± 10 mV ± 10% ± 10%  $100 \le X \le 500$ End Purge Time: Water sample: 2RND4\_ISCO-MW-2\_111315 Time collected: 1030 Total volume of purged water removed: 0.55 gal Physical appearance at start Physical appearance at sampling Color Yellowish/Brown Cloudy Yellowish/Brown Cloudy Color Odor None Odor None Sheen/Free Product None Sheen/Free Product None Analytical Parameters: Container Size Container Type # Collected Field Filtered Preservative Lab 40 ml Vial Ν **HCL** Accutest 500 ml Ρ 2 N/YNone Accutest Р HNO3 500 ml 1 Ν Accutest Notes: Well Volume = 0.18 gal Unable to pump due to recharge, bail 3 well volumes

| OBRIEN & GERE |
|---------------|
|---------------|

|                                              | DITILIA                                          | DULINE                   |                                                  | <b>LOW</b> 11                                    | OW Crour                                         | ila Water C                | ampinig L                                        | .09                                              |
|----------------------------------------------|--------------------------------------------------|--------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------|--------------------------------------------------|--------------------------------------------------|
| Date:                                        | 11/12/2015                                       | Person                   | nnel:                                            | A. C                                             | Carpenter                                        | Weather:                   | Rain                                             |                                                  |
| Site Name:                                   | Evor Phillips                                    | Pump/                    | Controller ID                                    | D#: Monsoon /                                    | # 14751                                          | Well #:                    | ISCO-MV                                          | V-3                                              |
| Site Location:                               | Old Bridge, NJ                                   | Sampl                    | ing Method:                                      | Lo                                               | w-Flow                                           | Project #:                 | 51308                                            |                                                  |
| Monitoring Equ                               | ip. Used (include                                | : ID#): Horriba          | a U-52 #                                         | 21053/14                                         | 1412                                             | ·<br>                      |                                                  |                                                  |
| Well informati                               | on:                                              |                          | Well Diame                                       | eter Multipliers                                 |                                                  | * Measuremen               | nts taken from                                   |                                                  |
| Depth of Well*:                              | <u></u>                                          | 29.80 ft.                | 2 in. = 0.1                                      | -                                                |                                                  | Х                          | Top of Well Ca                                   | ısing                                            |
| Depth to Water                               | ·*:                                              | 25.66 ft.                | 4 in. = 0.6                                      | .53 gal/ft                                       |                                                  |                            | Top of Protecti                                  | ve Casing                                        |
| Length of Wate                               |                                                  | ft.                      | 6 in. = 1.4                                      | -                                                |                                                  |                            | ]                                                |                                                  |
| Pump Intake D                                |                                                  | 24 ft.                   | 8 in. = 2.6                                      | 11 gal/ft                                        |                                                  |                            | (Other, Specify                                  | )                                                |
| Well Diameter:                               |                                                  | <u>2</u> in.             | <u></u>                                          |                                                  | <u></u>                                          |                            |                                                  |                                                  |
| Start Purge Tin                              |                                                  | 14:04                    |                                                  | indicate units                                   |                                                  |                            |                                                  |                                                  |
| Elapsed<br>Time                              | Depth To<br>Water<br>(ft bmp)                    | Temperature<br>(Celsius) | pH (SU)                                          | Specific<br>Conductivity<br>(mS/cm)              | ORP<br>(mV)                                      | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU)                               | Flow Rate<br>(ml/min)                            |
| 14:04                                        | 25.66                                            | 16.51                    |                                                  | 8.03                                             | -40                                              | 0.82                       | 0                                                | 450                                              |
| 14:09                                        | 25.87                                            | i e                      |                                                  |                                                  | -46                                              |                            |                                                  | 400                                              |
| 14:14                                        | 25.91                                            | 16.63                    | 12.17                                            | 8.77                                             | -48                                              | 0.00                       | 0                                                | 400                                              |
| 14:19                                        | 25.88                                            | 16.67                    | 12.26                                            | 9.03                                             | -47                                              | 0.00                       | 974                                              | 400                                              |
| 14:24                                        | 25.90                                            | 16.63                    | 12.28                                            | 8.95                                             | -44                                              | 0.00                       | 765                                              | 400                                              |
| 14:29                                        | 25.91                                            | 16.62                    | 12.30                                            | 9.01                                             | -41                                              | 0.00                       | 661                                              | 400                                              |
| 14:34                                        | 26.00                                            |                          |                                                  |                                                  |                                                  |                            | 1                                                | 400                                              |
| 14:39                                        | 26.02                                            |                          | t -                                              |                                                  | 1                                                |                            | 1                                                | 400                                              |
| 14:44                                        | 26.00                                            |                          | 12.36                                            |                                                  | 1                                                |                            | <del>                                     </del> | 400                                              |
| 14:49                                        | 26.00                                            |                          | 12.35                                            |                                                  | 1                                                |                            | 1                                                | 400                                              |
| 14:54                                        | 26.00                                            |                          | 12.39                                            |                                                  |                                                  |                            |                                                  | 400                                              |
| 14:59                                        | 26.01                                            | 16.61                    | 12.41                                            | 8.64                                             | -32                                              | 0.00                       | 746                                              | 400                                              |
|                                              | <del>                                     </del> | <u> </u> '               | <b>  </b>                                        | <b></b>                                          | <u> </u>                                         |                            | $\vdash$                                         | <del>                                     </del> |
|                                              |                                                  | <u> </u>                 | <del>  </del>                                    |                                                  | <u> </u>                                         |                            | <del>                                     </del> |                                                  |
|                                              |                                                  | <u> </u>                 | <del>                                     </del> | <u> </u>                                         | <del>                                     </del> |                            | <del>                                     </del> |                                                  |
|                                              |                                                  | <del> </del>             |                                                  |                                                  | <u> </u>                                         |                            | <del>                                     </del> |                                                  |
|                                              |                                                  |                          | <del>                                     </del> |                                                  | <del>                                     </del> |                            | <del>                                     </del> |                                                  |
|                                              | <u> </u>                                         | <del> </del>             | <del>                                     </del> | <del> </del>                                     | <del> </del>                                     |                            | <del>                                     </del> |                                                  |
| Stabilization                                | Δ ≤ 0.3'                                         | ± 3%                     | ± 0.1                                            | ± 3%                                             | ± 10 mV                                          | ± 10%                      | ± 10%                                            | 100 ≤ X ≤ 500                                    |
|                                              |                                                  | •                        | <u></u>                                          |                                                  | <u></u>                                          |                            |                                                  |                                                  |
| End Purge Tim  Water sample: Time collected: | 2RND4_I                                          | 4:59<br>ISCO-MW-3_1112   |                                                  | Total volume of                                  | puraed water i                                   | removed:                   | 6 gal                                            |                                                  |
|                                              | earance at start                                 | •                        |                                                  |                                                  | -                                                | earance at samp            |                                                  |                                                  |
|                                              |                                                  | Brown/tan/cloudy         | _                                                |                                                  |                                                  | Color                      | Clear/Tan                                        |                                                  |
|                                              | Odor Nor                                         |                          | -                                                |                                                  |                                                  |                            | None                                             | ı                                                |
| Sheen/Free Pro                               | oduct Nor                                        | ne                       | <u></u>                                          |                                                  | Sheen/F                                          | Free Product               | None                                             |                                                  |
| Analytical Para                              |                                                  | <del>_</del>             |                                                  |                                                  |                                                  |                            |                                                  |                                                  |
| Container S                                  | ize Cor                                          | ntainer Type             | # Collect                                        | ed Field                                         | d Filtered                                       | Preservat                  | ive                                              | Lab                                              |
| 40 ml<br>500 ml                              | $\overline{}$                                    | Vial<br>P                | 3                                                | <del>                                     </del> | N<br>N/Y                                         | HCL<br>None                |                                                  | Accutest<br>Accutest                             |
| 500 ml                                       |                                                  | P                        | 1                                                | <del>-  </del>                                   | N                                                | HNO3                       |                                                  | Accutest                                         |
|                                              |                                                  |                          | <u> </u>                                         |                                                  |                                                  |                            |                                                  |                                                  |
|                                              |                                                  |                          |                                                  |                                                  |                                                  |                            |                                                  |                                                  |
|                                              |                                                  |                          | <u> </u>                                         |                                                  |                                                  |                            |                                                  |                                                  |
| Notes:                                       |                                                  |                          |                                                  |                                                  |                                                  |                            |                                                  |                                                  |
| •                                            |                                                  |                          |                                                  |                                                  |                                                  |                            |                                                  |                                                  |
| ]                                            |                                                  |                          |                                                  |                                                  |                                                  |                            |                                                  |                                                  |
| •                                            | <del></del>                                      |                          |                                                  | •                                                |                                                  |                            | •                                                |                                                  |



|                               | BRIEN                                                 | O GERE                |                    | LOW FI                              | low Grou     | ind water S                                                  | ampling                        | Log                   |
|-------------------------------|-------------------------------------------------------|-----------------------|--------------------|-------------------------------------|--------------|--------------------------------------------------------------|--------------------------------|-----------------------|
| Date:                         | 11/12/2015                                            | Perso                 | nnel:              | D. M                                | ongiardo     | Weather:                                                     | Cloudy 40's                    |                       |
| Site Name:                    | Evor Phillips                                         | —<br>Pump             | /Controller II     | D#: Monsoon /                       | # 013735     | <br>Well #:                                                  | ISCO-M\                        | N-4                   |
| Site Location:                | Old Bridge, N                                         | <br>IJ Samp           | ling Method:       | Lo                                  | w-Flow       | Project #:                                                   | 51308                          | <del></del> 3         |
|                               | uip. Used (inclu                                      |                       | a U-52 #           | 21074                               | -            |                                                              |                                | <u> </u>              |
| Well informat                 |                                                       |                       |                    | eter Multipliers                    |              | * Measuremer                                                 | its taken from                 |                       |
| Depth of Well*                |                                                       | 19.85 ft.             | 2 in. = 0.1        | ·                                   |              | Х                                                            | Top of Well Ca                 | asing                 |
| Depth to Wate                 |                                                       | 19.14 ft.             | 4 in. = 0.6        | •                                   |              |                                                              | Top of Protect                 | •                     |
| Length of Wat                 | er Column:                                            | 0.71 ft.              | 6 in. = 1.4        | l69 gal/ft                          |              |                                                              |                                | -                     |
| Pump Intake D                 | Depth:                                                | 17 ft.                | 8 in. = 2.6        | 611 gal/ft                          |              |                                                              | (Other, Specify                | y)                    |
| Well Diameter                 | : <u> </u>                                            | <u>2</u> in.          |                    |                                     |              |                                                              |                                |                       |
| Start Purge Ti                | me:                                                   | 0910                  |                    | indicate units                      |              |                                                              |                                |                       |
| Elapsed<br>Time               | Depth To<br>Water<br>(ft bmp)                         | Temperature (Celsius) | pH (SU)            | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)  | Dissolved<br>Oxygen (mg/l)                                   | Turbidity<br>(NTU)             | Flow Rate<br>(ml/min) |
| 0915                          | 19.20                                                 | 16.15                 | 4.35               | 0.145                               | 299          | 2.87                                                         | 1000                           | 150                   |
| 0920                          | 19.21                                                 | 16.16                 | 4.33               | 0.130                               | 327          | 2.48                                                         | 694                            | 150                   |
| 0925                          | 19.22                                                 | 16.28                 | 4.32               | 0.126                               | 335          | 2.57                                                         | 436                            | 150                   |
| 0930                          | 19.23                                                 | 16.34                 | 4.30               | 0.126                               | 344          | 2.73                                                         | 220                            | 150                   |
| 0935                          | 19.23                                                 | 16.63                 | 4.29               | 0.125                               | 338          | 3.14                                                         | 147                            | 150                   |
| 0940                          | 19.23                                                 | 17.14                 | 4.26               | 0.121                               | 348          | 2.94                                                         | 88.5                           | 150                   |
| 0945                          | 19.24                                                 | 17.27                 | 4.25               | 0.120                               | 351          | 3.07                                                         | 60.5                           | 150                   |
| 0950                          | 19.24                                                 | 17.29                 | 4.25               | 0.120                               | 351          | 2.87                                                         | 56.9                           | 150                   |
| 0955                          | 19.24                                                 | 17.03                 | 4.26               | 0.118                               | 353          | 2.00                                                         | 33.2                           | 150                   |
| 1000                          | 19.24                                                 | 17.03                 | 4.26               | 0.117                               | 354          | 1.97                                                         | 30.4                           | 150                   |
| 1005                          | 19.24                                                 | 17.08                 | 4.24               | 0.119                               | 355          | 2.04                                                         | 42.7                           | 150                   |
| 1010                          | 19.24                                                 | 17.09                 | 4.24               | 0.117                               | 356          | 2.16                                                         | 42.6                           | 150                   |
|                               |                                                       |                       |                    |                                     |              |                                                              |                                |                       |
|                               | 1 10 2                                                | 1 20/                 |                    |                                     |              | 122/                                                         | 400/                           | 100 . 1/ . 500        |
| Stabilization                 | Δ ≤ 0.3'                                              | ± 3%                  | ± 0.1              | ± 3%                                | ± 10 mV      | ± 10%                                                        | ± 10%                          | 100 ≤ X ≤ 500         |
| Sheen/Free Pi                 | 2RND4 1: 1015 earance at star Color C Odor N roduct N |                       | 215<br>-<br>-<br>- | Total volume of                     | Physical app | removed:<br>pearance at sam<br>Color<br>Odor<br>Free Product | 2.5 gal  pling Clear None None | -<br>-<br>-           |
| Analytical Par<br>Container S |                                                       | Container Type        | # Collect          | ted Field                           | d Filtered   | Preservat                                                    | ive                            | Lab                   |
| 40 ml                         |                                                       | Vial                  | 3                  | . 1310                              | N            | HCL                                                          |                                | Accutest              |
| 500 ml                        |                                                       | Р                     | 2                  | ı                                   | N/Y          | None                                                         |                                | Accutest              |
| 500 ml                        |                                                       | Р                     | 1                  |                                     | N            | HNO3                                                         |                                | Accutest              |
|                               |                                                       |                       |                    |                                     |              | 1                                                            |                                |                       |
|                               |                                                       |                       |                    |                                     |              |                                                              |                                |                       |
| Notes:                        | <u> </u>                                              |                       | 1                  | 1                                   |              | 1                                                            | 1                              |                       |
|                               |                                                       |                       |                    |                                     |              |                                                              |                                |                       |
|                               |                                                       |                       |                    |                                     |              |                                                              |                                |                       |
|                               |                                                       |                       |                    |                                     |              |                                                              |                                |                       |

| OBRII | EN & | GERE |
|-------|------|------|

|                               | BITIEN                                                       | OGERE                                                        |                    | Low Flow Ground Water Sampling Log  |                 |                                                               |                        |                       |  |
|-------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------|-------------------------------------|-----------------|---------------------------------------------------------------|------------------------|-----------------------|--|
| Date:                         | 11/13/2015                                                   | Persor                                                       | nnel:              | nel: D. Mongiardo                   |                 | Weather:                                                      | Clear 40's             |                       |  |
| Site Name:                    | Evor Phillips                                                | –<br>Pump/                                                   | /Controller ID     | r ID#: Monsoon / # 013735           |                 | Well #:                                                       | ISCO-M\                | N-5                   |  |
| Site Location:                | Old Bridge, NJ                                               | _<br>J Sampl                                                 | ling Method:       | Lo                                  | w-Flow          | Project #:                                                    | 51308                  | <del></del>           |  |
|                               | uip. Used (includ                                            | _                                                            | a U-52 #           | 21074                               |                 | _ ′                                                           |                        |                       |  |
| Well informat                 |                                                              | ,                                                            | T                  | eter Multipliers                    |                 | * Measuremen                                                  | nts taken from         |                       |  |
| Depth of Well*                |                                                              | 32.60 ft.                                                    | 2 in. = 0.1        | •                                   |                 | X                                                             | Top of Well Ca         | asing                 |  |
| Depth to Wate                 |                                                              | 23.2 ft.                                                     | 4 in. = 0.6        | •                                   |                 |                                                               | Top of Protect         | -                     |  |
| Length of Wat                 |                                                              | 9.4 ft.                                                      | 6 in. = 1.4        | ⊧69 gal/ft                          |                 |                                                               | 1                      | · ·                   |  |
| Pump Intake D                 | Depth:                                                       | 27 ft.                                                       | 8 in. = 2.6        | i11 gal/ft                          |                 |                                                               | (Other, Specify        | y)                    |  |
| Well Diameter                 | : <u> </u>                                                   | <u>2</u> in.                                                 |                    |                                     |                 |                                                               |                        |                       |  |
| Start Purge Ti                | me:                                                          | 1045                                                         |                    | indicate units                      |                 |                                                               |                        |                       |  |
| Elapsed<br>Time               | Depth To<br>Water<br>(ft bmp)                                | Temperature<br>(Celsius)                                     | pH (SU)            | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)     | Dissolved<br>Oxygen (mg/l)                                    | Turbidity<br>(NTU)     | Flow Rate<br>(ml/min) |  |
| 1050                          | 23.22                                                        | 15.37                                                        | 6.13               | 0.264                               | 125             | 0.00                                                          | 800                    | 400                   |  |
| 1055                          | 23.24                                                        | 15.91                                                        | 6.24               | 0.258                               | 114             | 0.00                                                          | 800                    | 400                   |  |
| 1100                          | 23.24                                                        | 16.01                                                        | 6.23               | 0.253                               | 111             | 0.00                                                          | 800                    | 400                   |  |
| 1105                          | 23.24                                                        | 15.49                                                        | 6.16               | 0.242                               | 104             | 0.00                                                          | 303                    | 400                   |  |
| 1110                          | 23.24                                                        | 15.42                                                        | 6.13               | 0.236                               | 102             | 0.00                                                          | 109                    | 400                   |  |
| 1115                          | 23.25                                                        | 15.40                                                        | 6.12               | 0.237                               | 100             | 0.00                                                          | 46.0                   | 400                   |  |
| 1120                          | 23.26                                                        | 15.37                                                        | 6.05               | 0.237                               | 98              | 0.00                                                          | 19.1                   | 400                   |  |
| 1125                          | 23.26                                                        | 15.44                                                        | 5.97               | 0.238                               | 98              | 0.00                                                          | 12.6                   | 400                   |  |
| 1130                          | 23.26                                                        | 15.46                                                        | 5.96               | 0.238                               | 97              | 0.00                                                          | 10.3                   | 400                   |  |
| 1135                          | 23.26                                                        | 15.47                                                        | 5.96               | 0.239                               | 96              | 0.00                                                          | 7.4                    | 400                   |  |
|                               |                                                              |                                                              |                    |                                     |                 |                                                               |                        |                       |  |
|                               |                                                              |                                                              |                    |                                     |                 |                                                               |                        |                       |  |
|                               |                                                              |                                                              |                    |                                     |                 |                                                               |                        |                       |  |
|                               |                                                              |                                                              |                    |                                     |                 |                                                               |                        |                       |  |
|                               |                                                              |                                                              |                    |                                     |                 |                                                               |                        |                       |  |
|                               |                                                              |                                                              |                    |                                     |                 |                                                               | ļ                      |                       |  |
|                               |                                                              |                                                              | <u> </u>           |                                     |                 |                                                               | <b></b>                |                       |  |
|                               |                                                              |                                                              | <u> </u>           |                                     |                 |                                                               | <b></b>                |                       |  |
|                               |                                                              | <u> </u>                                                     | <u> </u>           |                                     |                 |                                                               |                        |                       |  |
| Stabilization                 | Δ ≤ 0.3'                                                     | ± 3%                                                         | ± 0.1              | ± 3%                                | ± 10 mV         | ± 10%                                                         | ± 10%                  | 100 ≤ X ≤ 500         |  |
| Sheen/Free Pi                 | 2RND4_ 1: 1140  earance at start  Color Ye  Odor Noroduct No | I140<br>ISCO-MW-5_1113<br>—<br>ellowish Cloudy<br>one<br>one | 315<br>-<br>-<br>- | Total volume of                     | Physical app    | removed:<br>pearance at samp<br>Color<br>Odor<br>Free Product | 6 gal pling Clear None |                       |  |
| Analytical Par<br>Container S |                                                              | ontoiner Tune                                                | T # Colloc         | tod Field                           | I Filtored      | Dragomyot                                                     | tivo                   | Lab                   |  |
| 40 ml                         | Size CC                                                      | ontainer Type<br>Vial                                        | # Collect          | .ea Field                           | l Filtered<br>N | Preservat<br>HCL                                              | .ive                   | Lab<br>Accutest       |  |
| 500 ml                        |                                                              | P                                                            | 2                  | 1                                   | N/Y             | None                                                          |                        | Accutest              |  |
| 500 ml                        |                                                              | Р                                                            | 1                  |                                     | N               | HNO3                                                          |                        | Accutest              |  |
|                               |                                                              |                                                              |                    |                                     |                 |                                                               |                        |                       |  |
|                               |                                                              |                                                              |                    |                                     |                 |                                                               |                        |                       |  |
|                               |                                                              |                                                              |                    |                                     |                 |                                                               |                        |                       |  |
| Notes:                        |                                                              |                                                              |                    |                                     |                 |                                                               |                        |                       |  |
|                               |                                                              |                                                              |                    |                                     |                 |                                                               |                        |                       |  |

| CODIEN         | _ | CERE |
|----------------|---|------|
| <b>O'BRIEN</b> | U | GERE |

|                                | DITILIA                       | OGLINE                                           |                                                  | 20111                               | on orour          | ia Water C                 | rampinig L                                       | -09                   |
|--------------------------------|-------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------|-------------------|----------------------------|--------------------------------------------------|-----------------------|
| Date:                          | 11/13/2015                    | Persor                                           | nnel:                                            | A. C                                | A. Carpenter      |                            | Sunny 50                                         | 0's                   |
| Site Name:                     | Evor Phillips                 | Pump/                                            | Controller ID                                    | )#: Monsoon /                       | Monsoon / # 14751 |                            | ISCO-MV                                          | V-6                   |
| Site Location:                 | Old Bridge, NJ                | Sampl                                            | ing Method:                                      | Lo                                  | w-Flow            | Project #:                 | 51308                                            |                       |
| Monitoring Equ                 | uip. Used (include            | e ID#): Horrib                                   | a U-52 #                                         | 21053/1441                          | 2                 |                            |                                                  |                       |
| Well informati                 |                               | ,                                                | 1                                                | eter Multipliers                    |                   | * Measuremer               | nts taken from                                   |                       |
| Depth of Well*                 | :                             | 33.57 ft.                                        | 2 in. = 0.16                                     | •                                   |                   | Х                          | Top of Well Ca                                   | ısing                 |
| Depth to Water                 |                               | 23.60 ft.                                        | 4 in. = 0.65                                     | -                                   |                   |                            | Top of Protecti                                  | -                     |
| Length of Wate                 | er Column:                    | ft.                                              | 6 in. = 1.46                                     | 69 gal/ft                           |                   |                            |                                                  |                       |
| Pump Intake D                  |                               | 29 ft.                                           | 8 in. = 2.6°                                     | 11 gal/ft                           |                   |                            | (Other, Specify                                  | <b>'</b> )            |
| Well Diameter:                 | :                             | <u>2</u> in.                                     | <u></u>                                          |                                     | <u> </u>          |                            |                                                  |                       |
| Start Purge Tir                | ne:                           | 11:40                                            |                                                  | indicate units                      |                   |                            |                                                  |                       |
| Elapsed<br>Time                | Depth To<br>Water<br>(ft bmp) | Temperature<br>(Celsius)                         | pH (SU)                                          | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)       | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU)                               | Flow Rate<br>(ml/min) |
| 11:40                          |                               | 15.48                                            | 4.67                                             | 0.630                               | 250               | 0.77                       | 0                                                | 450                   |
| 11:45                          | 23.80                         | 15.10                                            | 4.87                                             | 0.674                               | 252               | 0.52                       | 252                                              | 450                   |
| 11:50                          | 23.78                         | 15.03                                            | 4.93                                             | 0.673                               | 249               | 0.45                       | 249                                              | 450                   |
| 11:55                          | 23.78                         | 15.03                                            | 4.95                                             | 0.675                               | 249               | 0.43                       | 43.1                                             | 450                   |
| 12:00                          | 23.78                         | 15.01                                            | 4.97                                             | 0.675                               | 248               | 0.42                       | 32.4                                             | 450                   |
| 12:05                          | 23.80                         | 14.98                                            | 4.99                                             | 0.680                               | 248               | 0.38                       | 41.6                                             | 450                   |
| 12:10                          | 23.80                         | 15.00                                            | 4.98                                             | 0.673                               | 248               | 0.36                       | 34.2                                             | 450                   |
|                                |                               | <b></b>                                          |                                                  |                                     |                   |                            |                                                  |                       |
|                                |                               | <b></b>                                          |                                                  |                                     |                   |                            | ļ                                                | <del> </del>          |
|                                |                               | <del> </del>                                     |                                                  |                                     |                   |                            | <u> </u>                                         |                       |
|                                |                               | <del> </del>                                     | $\longmapsto$                                    |                                     |                   |                            | <del>                                     </del> |                       |
|                                |                               | <del>                                     </del> | <del>                                     </del> |                                     |                   |                            | <del> </del>                                     |                       |
|                                |                               | <del>                                     </del> | $\vdash$                                         |                                     |                   |                            | +                                                |                       |
|                                |                               | <del> </del>                                     | $\vdash$                                         |                                     |                   |                            | <del>                                     </del> |                       |
|                                |                               | <del>                                     </del> |                                                  |                                     |                   |                            | + -                                              |                       |
|                                |                               |                                                  |                                                  |                                     |                   |                            | †                                                |                       |
|                                |                               |                                                  |                                                  |                                     |                   |                            | †                                                |                       |
|                                |                               |                                                  |                                                  |                                     |                   |                            |                                                  |                       |
| Stabilization                  | Δ ≤ 0.3'                      | ± 3%                                             | ± 0.1                                            | ± 3%                                | ± 10 mV           | ± 10%                      | ± 10%                                            | 100 ≤ X ≤ 500         |
| End Purge Tim                  | ne: 1210                      |                                                  |                                                  |                                     |                   |                            |                                                  |                       |
| Water sample<br>Time collected | l: 1210                       | ISCO-MW-6_1113<br>-                              |                                                  | Total volume of                     |                   |                            | ~4 gal                                           |                       |
| Physical appe                  | earance at start Color        | Cloudy/orange-br                                 | rown                                             |                                     | Physical appe     | earance at samp<br>Color   | pling<br>Cloudy/orange-                          | brown                 |
|                                | Odor                          | None                                             | OWII                                             |                                     |                   | Odor                       | None                                             | -DIOWII               |
| Sheen/Free Pr                  | -                             | None                                             | _                                                |                                     | Sheen/F           | ree Product                | None                                             |                       |
| Analytical Par                 | ameters:                      |                                                  |                                                  |                                     |                   |                            |                                                  |                       |
| Container S                    | Size Cor                      | ntainer Type                                     | # Collecte                                       | ed Field                            | d Filtered        | Preservat                  | tive                                             | Lab                   |
| 40 ml                          |                               | Vial                                             | 3                                                |                                     | N                 | HCL                        |                                                  | Accutest              |
| 500 ml                         |                               | <u>Р</u><br>Р                                    | 2                                                |                                     | N / Y<br>N        | None<br>HNO3               |                                                  | Accutest<br>Accutest  |
| 500 1111                       | <del></del>                   |                                                  | <del>                                     </del> |                                     | IN                | HINOS                      | ·                                                | Acculest              |
|                                |                               |                                                  |                                                  |                                     |                   |                            |                                                  |                       |
|                                |                               |                                                  |                                                  |                                     |                   |                            |                                                  |                       |
| Notes:                         |                               |                                                  |                                                  |                                     |                   |                            |                                                  |                       |
|                                |                               |                                                  |                                                  |                                     |                   |                            |                                                  |                       |
|                                |                               |                                                  |                                                  |                                     |                   |                            |                                                  |                       |
|                                |                               |                                                  |                                                  |                                     |                   |                            |                                                  |                       |



| Date:           | 11/13/2015                                       | Persor            | Personnel: A. Carpenter                          |                  |               | Weather:                 | Sunny 5         | 50's                                             |
|-----------------|--------------------------------------------------|-------------------|--------------------------------------------------|------------------|---------------|--------------------------|-----------------|--------------------------------------------------|
| Site Name:      | Evor Phillips                                    | Pump/             | /Controller ID                                   | D#: Monsoon /    | # 14751       | Well #:                  | ISCO-M\         | W-7                                              |
| Site Location:  | Old Bridge, NJ                                   | Sampl             | ling Method:                                     | Lo <sup>,</sup>  | w-Flow        | Project #:               | 51308           | <del></del><br>3                                 |
|                 | uip. Used (include                               | •                 | a U-52 #21                                       | -                |               |                          |                 |                                                  |
| Well informati  |                                                  |                   | 1                                                | eter Multipliers |               | * Measuremen             | ts taken from   |                                                  |
| Depth of Well*  |                                                  | 22.60 ft.         | 2 in. = 0.163 gal/ft                             |                  |               |                          | Top of Well Ca  | asing                                            |
| Depth to Wate   |                                                  | 20.69 ft.         | 4 in. = 0.65                                     | •                |               |                          | Top of Protect  |                                                  |
| Length of Wate  |                                                  | ft.               | 6 in. = 1.46                                     | -                |               |                          |                 | 3                                                |
| Pump Intake D   | epth:                                            | 20 ft.            | 8 in. = 2.6°                                     | 11 gal/ft        |               |                          | (Other, Specify | y)                                               |
| Well Diameter:  | : <u> </u>                                       | <u>2</u> in.      |                                                  |                  |               |                          |                 |                                                  |
| Start Purge Tir | ne:                                              | 9:19              |                                                  | indicate units   |               |                          |                 |                                                  |
| Elapsed         | Depth To                                         | Temperature       |                                                  | Specific         | ORP           | Dissolved                | Turbidity       | Flow Rate                                        |
| Time            | Water                                            | (Celsius)         | (01)                                             | Conductivity     | (mV)          | Oxygen (mg/l)            |                 | (ml/min)                                         |
| 0.10            | (ft bmp)                                         | 45.00             | pH (SU)                                          | (mS/cm)          | 404           | 0.04                     | 4000            | 100                                              |
| 9:19            |                                                  | 15.99             | 8.69                                             | 3.38             |               |                          | 1000            | 400                                              |
| 9:24            |                                                  | 16.20             | 7.19                                             |                  |               |                          |                 | 400                                              |
| 9:29            |                                                  | 16.53             | 6.89                                             |                  |               |                          |                 | 350                                              |
| 9:34            |                                                  | 16.59             | 6.76                                             |                  | 168<br>165    |                          |                 | 350                                              |
| 9:39            |                                                  | 16.92             | 6.73                                             |                  |               |                          | 1000            | 350                                              |
| 9:44            | <del>                                     </del> | 17.12             | 6.64                                             | 1.93             |               |                          | 519             | 350                                              |
| 9:49            | <del>                                     </del> | 17.03             | 6.59                                             | 1.79             |               |                          |                 | 350                                              |
| 9:54            | <del>                                     </del> | 17.03             | 6.51                                             | 1.77             |               |                          |                 | 350                                              |
| 9:59            | <del>                                     </del> | 17.05             | 6.55                                             |                  |               |                          |                 | 350                                              |
| 10:04           | top of pump                                      | 17.10             | 6.52                                             | 1.95             | 158           | 1.95                     | 443             | 350                                              |
|                 |                                                  |                   | $\vdash$                                         |                  |               |                          |                 | <del>                                     </del> |
|                 |                                                  |                   | $\vdash$                                         |                  |               |                          |                 | <del>                                     </del> |
|                 |                                                  |                   | +                                                |                  |               |                          |                 |                                                  |
|                 |                                                  |                   | + +                                              |                  |               |                          |                 |                                                  |
|                 |                                                  |                   | + +                                              |                  |               |                          |                 |                                                  |
|                 |                                                  |                   |                                                  |                  |               |                          |                 |                                                  |
|                 |                                                  |                   | <del>                                     </del> |                  | }             |                          |                 | <del> </del>                                     |
|                 |                                                  |                   | <del>                                     </del> |                  |               |                          |                 | <del> </del>                                     |
| Stabilization   | Δ ≤ 0.3'                                         | ± 3%              | ± 0.1                                            | ± 3%             | ± 10 mV       | ± 10%                    | ± 10%           | 100 ≤ X ≤ 500                                    |
|                 | •                                                | •                 | <u></u>                                          |                  |               |                          |                 |                                                  |
| End Purge Tim   |                                                  | 10:04             |                                                  |                  |               |                          |                 |                                                  |
| Water sample    |                                                  | SCO-MW-7_1113     |                                                  |                  |               |                          |                 |                                                  |
| Time collected  |                                                  |                   |                                                  | Total volume of  |               |                          | ~5 ga           | <u>al</u>                                        |
| Priysical appe  | earance at start Color                           | Brownish/tan/clou | udv                                              |                  | Physical appe | earance at samp<br>Color | Clear/tan       |                                                  |
|                 | Odor                                             | None              | udy                                              |                  |               |                          | None            | -                                                |
| Sheen/Free Pr   |                                                  | None              | <u>-</u>                                         |                  | Sheen/F       |                          | None            | _                                                |
| Analytical Par  | ameters:                                         |                   |                                                  |                  |               |                          |                 |                                                  |
| Container S     |                                                  | ntainer Type      | # Collecte                                       | ed Field         | Filtered      | Preservati               | ive             | Lab                                              |
| 40 ml           |                                                  | Vial              | 3                                                |                  | N             | HCL                      |                 | Accutest                                         |
| 500 ml          |                                                  | Р                 | 2                                                | 1                | N/Y           | None                     |                 | Accutest                                         |
| 500 ml          |                                                  | Р                 | 1                                                |                  | N             | HNO3                     |                 | Accutest                                         |
|                 |                                                  |                   |                                                  |                  |               |                          |                 |                                                  |
|                 | <del></del>                                      |                   |                                                  |                  |               |                          | +               |                                                  |
| Notes:          |                                                  |                   |                                                  |                  |               |                          |                 |                                                  |
| 140100.         |                                                  |                   |                                                  |                  |               |                          |                 |                                                  |
|                 |                                                  |                   |                                                  |                  |               |                          |                 |                                                  |
|                 |                                                  |                   |                                                  | •                |               |                          |                 |                                                  |

| П     | O'BRIEN &  | GERE |
|-------|------------|------|
| Date: | 11/13/2015 | Pers |

| Date:           | 11/13/2015                                       | Persor           | nnel:                | A. C                 | A. Carpenter   |                 | Sunny           | /                    |
|-----------------|--------------------------------------------------|------------------|----------------------|----------------------|----------------|-----------------|-----------------|----------------------|
| Site Name:      | Evor Phillips                                    | _ Pump/          | /Controller ID       | D#: Monsoon /        | # 14751        | Well #:         | ISCO-MV         | N-8                  |
| Site Location:  | Old Bridge, NJ                                   | Sampl            | ling Method:         | Lo                   | Low-Flow       |                 | 51308           | }                    |
| Monitoring Equ  | uip. Used (include                               | ∍ ID#):Horrib    | a U-52 #             | 21053/14412          | <u> </u>       | ·               |                 |                      |
| Well informati  | ion:                                             |                  | Well Diame           | eter Multipliers     |                | * Measuremen    | its taken from  |                      |
| Depth of Well*: | :                                                | 26.52 ft.        | 2 in. = 0.16         | ·                    | 1              | Х               | Top of Well Ca  | asing                |
| Depth to Water  | r*:                                              | 24.44 ft.        | 4 in. = 0.653 gal/ft |                      |                | Top of Protecti |                 |                      |
| Length of Wate  |                                                  | ft.              | 6 in. = 1.46         | •                    | 1              |                 |                 |                      |
| Pump Intake D   |                                                  | 21 ft.           | 8 in. = 2.6          | 11 gal/ft            | 1              |                 | (Other, Specify | /)                   |
| Well Diameter:  |                                                  | <u>2</u> in.     | <u></u>              |                      | <u></u>        |                 |                 |                      |
| Start Purge Tin |                                                  | 7:38             |                      | indicate units       |                |                 |                 |                      |
| Elapsed         | Depth To<br>Water                                | Temperature      |                      | Specific             | ORP            | Dissolved       | Turbidity       | Flow Rate            |
| Time            | (ft bmp)                                         | (Celsius)        | pH (SU)              | Conductivity (mS/cm) | (mV)           | Oxygen (mg/l)   | (NTU)           | (ml/min)             |
| 7:38            | 24.44                                            | 16.49            | 12.19                |                      | 37             | 0.00            | 236             | 450                  |
| 7:43            | i                                                | 12.68            | 12.68                |                      |                |                 | 1               |                      |
| 7:48            |                                                  | 16.85            | 12.66                |                      |                | <u> </u>        |                 | 350                  |
| 7:53            | top of pump                                      | 16.92            | 12.67                | 34.4                 |                |                 |                 |                      |
| 7:58            | <del>                                     </del> | 16.96            | 12.66                |                      |                |                 | 40              |                      |
| 8:03            | top of pump                                      | 16.98            | 12.66                |                      |                |                 | 40              |                      |
| 8:08            | top of pump                                      | 17.00            | 12.66                | <del> </del>         |                |                 | <del> </del>    | 350                  |
| 8:13            |                                                  | 17.06            | 12.66                | 1                    |                |                 | <del> </del>    |                      |
| 8:18            |                                                  | 17.10            | 12.65                | 1                    |                |                 | <del> </del>    |                      |
| 8:23            | top of pump                                      | 17.10            | 12.65                |                      |                |                 |                 |                      |
|                 |                                                  |                  |                      |                      |                |                 |                 |                      |
|                 |                                                  |                  |                      |                      |                |                 |                 |                      |
|                 |                                                  |                  |                      |                      |                |                 |                 |                      |
|                 |                                                  |                  |                      |                      |                |                 |                 |                      |
|                 |                                                  |                  |                      |                      |                |                 |                 |                      |
|                 |                                                  |                  |                      |                      |                |                 |                 |                      |
|                 |                                                  |                  |                      |                      | <u> </u>       |                 |                 |                      |
|                 |                                                  | <u> </u>         | <u> </u>             |                      | <u> </u>       |                 | <u> </u>        |                      |
|                 |                                                  | <u> </u>         | <u> </u>             |                      | <u> </u>       |                 |                 |                      |
| Stabilization   | Δ ≤ 0.3'                                         | ± 3%             | ± 0.1                | ± 3%                 | ± 10 mV        | ± 10%           | ± 10%           | 100 ≤ X ≤ 500        |
| End Purge Tim   | ıe:                                              | 8:23             |                      |                      |                |                 |                 |                      |
| Water sample:   |                                                  | RND4_ISCO-MW-    | -8 111315            |                      |                |                 |                 |                      |
| Time collected: |                                                  |                  |                      | Total volume of      | purged water r | emoved:         | ~ 5 gal         |                      |
| Physical appe   | earance at start                                 |                  |                      |                      |                | earance at samp |                 |                      |
|                 |                                                  | Brownish/Tan/Clo | oudy                 |                      |                |                 | Clear/Yellowish | ņ                    |
|                 |                                                  | None             | -                    |                      |                | •               | None            |                      |
| Sheen/Free Pro  | oduct                                            | None             |                      |                      | Sheen/F        | ree Product     | None            | ·                    |
| Analytical Para |                                                  |                  |                      |                      |                |                 |                 |                      |
| Container S     | ize Con                                          | ntainer Type     | # Collecte           | ed Field             | d Filtered     | Preservati      | ive             | Lab                  |
| 40 ml           | $\longrightarrow$                                | Vial<br>P        | 3                    | <del></del>          | N<br>N / V     | HCL             |                 | Accutest             |
| 500 ml          | <del></del>                                      | <u>Р</u>         | 1                    |                      | N / Y<br>N     | None<br>HNO3    | -+              | Accutest<br>Accutest |
| 000 1           | $\overline{}$                                    |                  | · ·                  |                      |                | 111.00          |                 | Accuracy             |
|                 |                                                  |                  |                      | <del></del>          |                |                 |                 |                      |
|                 |                                                  |                  |                      |                      |                |                 |                 |                      |
| Notes:          |                                                  |                  |                      |                      |                |                 |                 |                      |
| ,               |                                                  |                  |                      |                      |                |                 |                 |                      |
|                 |                                                  |                  |                      |                      |                |                 |                 |                      |
| 4               |                                                  |                  |                      |                      |                |                 |                 |                      |



Date: 11/12/2015 Personnel: D. Mongiardo Weather: Cloudy 50's Site Name: Evor Phillips Pump/Controller ID#: Monsoon / # 013735 Well #: ISCO-MW-9 Site Location: Old Bridge, NJ Sampling Method: 51308 Low-Flow Project #:

Monitoring Equip. Used (include ID#): Horriba U-52 #\_\_\_\_\_21074\_

| Well information:       |           | Well Diameter Multipliers | * Measurements taken from |                          |  |
|-------------------------|-----------|---------------------------|---------------------------|--------------------------|--|
| Depth of Well*:         | 24.85 ft. | 2 in. = 0.163 gal/ft      | X                         | Top of Well Casing       |  |
| Depth to Water*:        | 22.96 ft. | 4 in. = 0.653 gal/ft      |                           | Top of Protective Casing |  |
| Length of Water Column: | 1.89 ft.  | 6 in. = 1.469 gal/ft      |                           |                          |  |
| Pump Intake Depth:      | 22 ft.    | 8 in. = 2.611 gal/ft      |                           | (Other, Specify)         |  |
| Well Diameter:          | 2 in.     |                           |                           | _                        |  |

Start Purge Time: 1145 indicate units

| Elapsed<br>Time | Depth To<br>Water<br>(ft bmp) | Temperature<br>(Celsius) | pH (SU) | Specific Conductivity (mS/cm) | ORP<br>(mV) | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU) | Flow Rate<br>(ml/min) |
|-----------------|-------------------------------|--------------------------|---------|-------------------------------|-------------|----------------------------|--------------------|-----------------------|
| 1150            | -                             | 16.62                    | 6.21    | 0.457                         | 249         | 0.00                       | 494                | 400                   |
| 1155            | -                             | 16.46                    | 6.37    | 0.579                         | 257         | 0.00                       | 494                | 400                   |
| 1200            | -                             | 16.27                    | 6.64    | 0.732                         | 248         | 0.00                       | 296                | 400                   |
| 1205            | -                             | 16.23                    | 6.56    | 0.626                         | 247         | 0.00                       | 195                | 400                   |
| 1210            | -                             | 16.26                    | 6.59    | 0.660                         | 246         | 0.00                       | 245                | 400                   |
| 1215            | -                             | 16.29                    | 6.60    | 0.676                         | 245         | 0.00                       | 302                | 400                   |
| 1220            | -                             | 16.31                    | 6.55    | 0.557                         | 251         | 0.00                       | 156                | 400                   |
| 1225            | -                             | 17.07                    | 6.69    | 0.527                         | 227         | 0.91                       | 800                | 150                   |
|                 |                               |                          | V       | /ell stopped pum              | ping        |                            |                    |                       |
| 1320            | 23.09                         | 16.55                    | 6.81    | 0.846                         | 240         | 0.16                       | 800                | 400                   |
| 1325            | 23.09                         | 16.93                    | 6.88    | 0.904                         | 239         | 0.11                       | 800                | 400                   |
| 1330            | 23.09                         | 16.63                    | 6.67    | 0.692                         | 245         | 0.00                       | 326                | 400                   |
| 1335            | 23.11                         | 16.00                    | 6.73    | 0.710                         | 246         | 0.00                       | 324                | 400                   |
| 1340            | 23.11                         | 15.81                    | 6.92    | 0.805                         | 239         | 0.00                       | 321                | 400                   |
| 1345            | 23.11                         | 15.78                    | 6.90    | 0.783                         | 238         | 0.00                       | 331                | 400                   |
|                 |                               |                          |         |                               |             |                            |                    |                       |
| Stabilization   | Δ ≤ 0.3'                      | ± 3%                     | ± 0.1   | ± 3%                          | ± 10 mV     | ± 10%                      | ± 10%              | 100 ≤ X ≤ 500         |

End Purge Time: 1350

Water sample: 2RND4\_ISCO-MW-9\_111315

Time collected: 1350 Total volume of purged water removed: ~6.5 gal

Physical appearance at start

Physical appearance at sampling

Color Cloudy/Yellowish Orange

 Color
 Cloudy/Yellowish Orange
 Color
 Cloudy/Yellow

 Odor
 None
 Odor
 None

Sheen/Free Product None Sheen/Free Product None

**Analytical Parameters:** 

| ,              |                |             |                |              |          |
|----------------|----------------|-------------|----------------|--------------|----------|
| Container Size | Container Type | # Collected | Field Filtered | Preservative | Lab      |
| 40 ml          | Vial           | 3           | N              | HCL          | Accutest |
| 500 ml         | Р              | 2           | N/Y            | None         | Accutest |
| 500 ml         | Р              | 1           | N              | HNO3         | Accutest |
|                |                |             |                |              |          |
|                |                |             |                |              |          |
|                |                |             |                |              |          |

Notes: 1230 well stopped pumping, changed pump, no help

Battery was dead/ not sufficient repumping at 1315

| <b>b</b> | OBRIEN | 8 | GER | E |
|----------|--------|---|-----|---|
|          |        |   |     |   |

|                      | Dillette           | , 01111             |                   |                          |                 |                  |                   | 9               |
|----------------------|--------------------|---------------------|-------------------|--------------------------|-----------------|------------------|-------------------|-----------------|
| Date:                | 11/12/2015         | Person              | nel: A. Carpenter |                          | Weather:        | Rain             |                   |                 |
| Site Name:           | Evor Phillips      | Pump/               | Controller ID     | D#: Monsoon /            | # 14751         | Well #:          | IW1-BT-           | -2              |
| Site Location:       | Old Bridge, NJ     | Sampli              | ing Method:       | Lo                       | w-Flow          | Project #:       | Project #: 51308  |                 |
| Monitoring Equ       | uip. Used (include |                     | a U-52 #          | 21053/14                 | 412             | •                |                   |                 |
| Well informati       | <u> </u>           | ,                   | Well Diame        | eter Multipliers         |                 | * Measuremen     | its taken from    |                 |
| Depth of Well*       |                    | 36.60 ft.           | 2 in. = 0.1       | -                        |                 | Х                | Top of Well Ca    | ısing           |
| Depth to Wate        | r*:                | 26.6 ft.            | 4 in. = 0.6       | 53 gal/ft                |                 |                  | Top of Protective | =               |
| Length of Wate       | er Column:         | ft.                 | 6 in. = 1.4       | ·                        |                 |                  | ļ                 |                 |
| Pump Intake D        | · —                | <u>26</u> ft.       | 8 in. = 2.6       | 11 gal/ft                |                 |                  | (Other, Specify   | ')              |
| Well Diameter:       |                    | <u>2</u> in.        |                   |                          |                 |                  |                   |                 |
| Start Purge Tir      | •                  | 11:24               |                   | indicate units           |                 |                  |                   |                 |
| Elapsed              | Depth To<br>Water  | Temperature         |                   | Specific<br>Conductivity | ORP             | Dissolved        | Turbidity         | Flow Rate       |
| Time                 | (ft bmp)           | (Celsius)           | pH (SU)           | (mS/cm)                  | (mV)            | Oxygen (mg/l)    | (NTU)             | (ml/min)        |
| 11:24                |                    | 15.79               | 12.58             | 21.2                     | -304            | 0.80             | 0                 | 450             |
| 11:29                | 26.68              | 15.38               | 11.92             | 6.78                     | -177            | 0.84             | 0                 | 450             |
| 11:34                | 26.69              | 15.35               | 11.75             | 5.76                     | -255            | 0.85             | 0                 | 450             |
| 11:39                | 26.70              | 15.31               | 11.08             | 3.93                     | -218            | 0.87             | 698               | 450             |
| 11:44                | 26.71              | 15.32               | 10.80             | 3.56                     | -203            | 0.83             | 575               | 450             |
| 11:49                | 1                  | 15.34               | 10.54             | 3.24                     | -189            | 0.81             | 399               | 450             |
| 11:54                | 1                  | 15.35               | 10.42             | 3.09                     | -181            | 1.34             |                   | 450             |
| 11:59                | 1                  | 15.28               | 10.13             | 2.79                     | -165            | 0.98             | 1                 | 450             |
| 12:04                | 1                  | 15.25               | 10.04             | 2.62                     | -14             | 1.03             | t                 | 450             |
| 12:09                | <del> </del>       | 15.24               | 9.72              | 2.39                     | 2               | 1.01             | 120               | 450             |
| 12:14                | 26.70              | 15.25               | 9.72              | 2.40                     | 3               | 1.00             | 111               | 450             |
|                      |                    |                     |                   |                          |                 |                  |                   |                 |
|                      |                    |                     |                   |                          |                 |                  |                   |                 |
|                      |                    |                     |                   |                          |                 |                  |                   |                 |
|                      |                    |                     |                   |                          |                 |                  |                   |                 |
|                      |                    |                     |                   |                          |                 |                  |                   |                 |
|                      |                    |                     |                   |                          |                 |                  |                   |                 |
|                      |                    |                     |                   |                          |                 |                  |                   |                 |
| Stabilization        | Δ ≤ 0.3'           | ± 3%                | ± 0.1             | ± 3%                     | ± 10 mV         | ± 10%            | ± 10%             | 100 ≤ X ≤ 500   |
| End Purge Tim        | ne: 12:            | :14                 |                   |                          |                 |                  |                   |                 |
| Water sample         |                    | N1-BT-2_111215      |                   |                          |                 |                  |                   |                 |
| Time collected       |                    |                     |                   | Total volume of          | purged water re | emoved:          | ~6 gal            |                 |
| Physical appe        | earance at start   |                     |                   |                          | Physical appe   | earance at samp  | oling             |                 |
|                      |                    | Brown/Cloudy        |                   |                          |                 | Color            | Brown/Clear       |                 |
| Ch / D               | Odor Non           |                     |                   |                          | Ch / -          | Odor             | None              |                 |
| Sheen/Free Pr        | roduct Non         | .e                  |                   |                          | Sneen/F         | ree Product      | None              |                 |
| Analytical Par       |                    | tain an T.          | # Callage         | ad Field                 | Citona d        | Dwaganyat        | ÷                 | - Lab           |
| Container S<br>40 ml | size Con           | tainer Type<br>Vial | # Collect         | ed Fleid                 | Filtered<br>N   | Preservat<br>HCL | ive               | Lab<br>Accutest |
| 500 ml               |                    | P                   | 2                 | 1                        | N/Y             | None             |                   | Accutest        |
| 500 ml               |                    | Р                   | 1                 |                          | N               | HNO3             |                   | Accutest        |
|                      |                    |                     |                   |                          |                 |                  |                   |                 |
|                      |                    |                     |                   |                          |                 |                  |                   |                 |
| Notes:               |                    |                     |                   |                          |                 |                  |                   |                 |
| Notes.               |                    |                     |                   |                          |                 |                  |                   |                 |
|                      |                    |                     |                   |                          |                 |                  |                   |                 |
|                      |                    |                     |                   |                          |                 |                  |                   |                 |

| Ь | O'BRIEN | 8 GERE |
|---|---------|--------|
|---|---------|--------|

|                               | Dilleit                       | JOLINE                   |               |                                     | on o.ou.        | ia mater o                 | - apg              | -09                   |
|-------------------------------|-------------------------------|--------------------------|---------------|-------------------------------------|-----------------|----------------------------|--------------------|-----------------------|
| Date:                         | 11/12/2015                    | Person                   | nel:          | A. Carpenter                        |                 | Weather:                   | Cloudy 5           | 0's                   |
| Site Name:                    | Evor Phillips                 | Pump/                    | Controller ID | D#: Monsoon /                       | # 14751         | Well #:                    | IW1-DR             | -1                    |
| Site Location:                | Old Bridge, NJ                | Sampli                   | ng Method:    | Lov                                 | w-Flow          | Project #:                 | 51308              |                       |
| Monitoring Equ                | uip. Used (include            | ID#): Horriba            | a U-52 #      | 21053/14                            | 412             |                            |                    |                       |
| Well informati                |                               | ,                        |               | eter Multipliers                    |                 | * Measuremen               | its taken from     |                       |
| Depth of Well*:               | :                             | 36.11 ft.                | 2 in. = 0.1   | ·                                   |                 | Х                          | Top of Well Ca     | sing                  |
| Depth to Water                |                               | 27.67 ft.                | 4 in. = 0.6   | -                                   |                 |                            | Top of Protective  | -                     |
| Length of Wate                | er Column:                    | 8.44 ft.                 | 6 in. = 1.4   | 69 gal/ft                           |                 |                            |                    |                       |
| Pump Intake D                 | epth:                         | 27 ft.                   | 8 in. = 2.6   | 11 gal/ft                           |                 |                            | (Other, Specify    | <b>'</b> )            |
| Well Diameter:                | <u> </u>                      | <u>2</u> in.             |               |                                     |                 |                            |                    |                       |
| Start Purge Tin               | ne:                           | 9:30                     |               | indicate units                      |                 |                            |                    |                       |
| Elapsed<br>Time               | Depth To<br>Water<br>(ft bmp) | Temperature<br>(Celsius) | pH (SU)       | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)     | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU) | Flow Rate<br>(ml/min) |
| 9:30                          |                               | 15.19                    | 6.98          | 0.449                               | -112            | 0.00                       | 465                | 400                   |
| 9:35                          | 27.75                         | 15.72                    | 6.15          | 0.414                               | -49             | 0.00                       | 460                | 400                   |
| 9:40                          | 27.76                         | 15.86                    | 6.02          | 0.358                               | -40             | 0.00                       | 420                | 400                   |
| 9:45                          | 27.76                         | 15.86                    | 5.90          | 0.359                               | -40             | 0.00                       | 249                | 400                   |
| 9:50                          | 27.76                         | 15.76                    | 5.97          | 0.359                               | -45             | 0.00                       | 95.1               | 400                   |
| 9:55                          | 27.76                         | 15.75                    | 5.95          | 0.359                               | -46             | 0.00                       | 117                | 400                   |
| 10:00                         | 27.75                         | 16.01                    | 5.96          | 0.361                               | -48             | 0.00                       | 198                | 400                   |
| 10:05                         | 27.75                         | 15.90                    | 5.96          | 0.356                               | -49             | 0.00                       | 79.7               | 400                   |
| 10:10                         | 27.75                         | 15.83                    | 5.93          | 0.355                               | -48             | 0.00                       | 77.9               | 400                   |
|                               |                               |                          |               |                                     |                 |                            |                    |                       |
|                               |                               |                          |               |                                     |                 |                            |                    |                       |
|                               |                               |                          |               |                                     |                 |                            |                    |                       |
|                               |                               |                          |               |                                     |                 |                            | -                  |                       |
|                               |                               |                          |               |                                     |                 |                            | 1                  |                       |
|                               |                               |                          |               |                                     |                 |                            |                    |                       |
|                               |                               |                          |               |                                     |                 |                            |                    |                       |
|                               |                               |                          |               |                                     |                 |                            |                    |                       |
|                               |                               |                          |               |                                     |                 |                            |                    |                       |
| Stabilization                 | Δ ≤ 0.3'                      | ± 3%                     | ± 0.1         | ± 3%                                | ± 10 mV         | ± 10%                      | ± 10%              | 100 ≤ X ≤ 500         |
| End Purge Tim                 | ne: 10                        | :10                      |               |                                     |                 |                            |                    |                       |
| Water sample                  | -                             | <br>W1-DR-1_111215       | ;             |                                     |                 |                            |                    |                       |
| Time collected                |                               |                          |               | Total volume of                     | purged water re | emoved:                    | ~4.5 ga            | al                    |
| Physical appe                 | earance at start              |                          |               |                                     | Physical appe   | earance at samp            | pling              |                       |
|                               | Color                         | Black                    |               |                                     |                 | Color                      | Clear              |                       |
| Sheen/Free Pr                 | Odor Non                      |                          | ı             |                                     | Chaan/E         | Odor<br>ree Product        | None               |                       |
|                               |                               | ie                       |               |                                     | Sneen/F         | ree Product                | None               |                       |
| Analytical Par<br>Container S |                               | atoiner Type             | # Collect     | end I Field                         | I Filtered      | Preservat                  | in co              | Lab                   |
| 40 ml                         | size Con                      | ntainer Type<br>Vial     | # Collect     | ed Fleid                            | N               | HCL                        | ive                | Accutest              |
| 500 ml                        |                               | P                        | 2             | 1                                   | N / Y           | None                       |                    | Accutest              |
| 500 ml                        |                               | Р                        | 1             |                                     | N               | HNO3                       |                    | Accutest              |
|                               |                               |                          |               |                                     |                 |                            |                    |                       |
|                               |                               |                          |               |                                     |                 |                            |                    |                       |
| Notes:                        |                               |                          |               |                                     |                 |                            |                    |                       |
| Notes.                        |                               |                          |               |                                     |                 |                            |                    |                       |
|                               |                               |                          |               |                                     |                 |                            |                    |                       |
|                               |                               |                          |               |                                     |                 |                            |                    |                       |



11/13/2015 Personnel: K.Teitsma Weather: Sunny 50's Date: Site Name: Evor Phillips Pump/Controller ID#: Monsoon / # 030729 Well #: PZ-1S Site Location: Old Bridge, NJ Sampling Method: Low-Flow Project #: 51308 Monitoring Equip. Used (include ID#): Horriba U-52 # 21284/21780 Well information: Well Diameter Multipliers \* Measurements taken from Depth of Well\*: 32.02 ft. 2 in. = 0.163 gal/ftTop of Well Casing 19.87 ft. Depth to Water\*: 4 in. = 0.653 gal/ftTop of Protective Casing Length of Water Column: 6 in. = 1.469 gal/ft ft. Pump Intake Depth: 24 ft. 8 in. = 2.611 gal/ft (Other, Specify) Well Diameter: 2 in. Start Purge Time: 0845 indicate units Depth To Specific **Elapsed Temperature** ORP Dissolved **Turbidity** Flow Rate Water Conductivity Time (Celsius) (mV) Oxygen (mg/l) (NTU) (ml/min) (mS/cm) (ft bmp) pH (SU) 0850 19.81 15.31 6.10 0.298 301 0.00 0.0 250 0855 19.86 15.55 6.15 0.302 0.00 1000 250 291 0900 19.86 15.36 6.14 0.299 285 0.00 619 250 0905 19.86 15.59 6.15 0.303 280 0.00 493 250 0910 19.86 15.61 6.15 0.301 329 0.00 328 250 0915 19.86 15.54 6.15 0.300 0.00 253 250 267 0920 19.86 15.58 6.15 0.301 264 0.00 232 250 0925 19.86 15.61 6.15 0.302 259 0.00 171 250 0930 19.86 15.52 6.15 0.301 257 0.00 129 250 0935 19.86 15.53 6.14 0.303 254 0.00 105 250 0940 19.86 15.54 6.14 0.303 252 0.00 77.0 250 6.14 250 0.00 64.5 250 0945 19.86 15.49 0.301 0950 19.86 15.58 6.14 0.302 248 0.00 53.3 250 0.00 44.5 0955 19.86 15.57 6.14 0.301 246 250 6.14 0.00 41.5 1000 19.86 15.50 0.300 245 250 6.14 0.300 244 0.00 32.0 250 1005 19.86 15.53 1010 19.86 15.39 6.14 0.298 243 0.00 27.4 250 Stabilization  $\Delta \leq 0.3$ ± 3%  $\pm 0.1$ ± 3% ± 10 mV ± 10% ± 10%  $100 \le X \le 500$ End Purge Time: 1015 2RND4\_PZ-1S\_111315 Water sample: Time collected: 1015 Total volume of purged water removed: ~6 gal Physical appearance at start Physical appearance at sampling Color Yellowish/Cloudy Clear Color Odor None Odor None Sheen/Free Product None Sheen/Free Product None Analytical Parameters: Container Size Container Type # Collected Field Filtered Preservative Lab 40 ml Vial Ν HCL Accutest 500 ml Ρ 2 N/YNone Accutest Р 500 ml 1 Ν HNO3 Accutest Notes:

| O'BRIEN & GERE |
|----------------|
| 00111111001111 |

|                                           | BRIEN                         | OGERE                 |                | LOW FI                        | ow Grou        | ind water S                | ampling i          | Log                   |
|-------------------------------------------|-------------------------------|-----------------------|----------------|-------------------------------|----------------|----------------------------|--------------------|-----------------------|
| Date:                                     | Date:11/13/2015 Personr       |                       | nnel:          | nel: D. Mongiardo             |                | Weather:                   | Sunny 40's         |                       |
| Site Name:                                | Evor Phillips                 | –<br>Pump             | /Controller ID | D#: Monsoon /                 | # 013735       | Well #:                    | II #: MW-5I        |                       |
| Site Location:                            | Old Bridge, N.                | <br>J Samp            | ling Method:   | Lo                            | w-Flow         | Project #:                 | 51308              | <del></del>           |
|                                           | uip. Used (includ             |                       | a U-52 #       | 21074                         |                | _                          |                    | <del></del>           |
| Well informat                             |                               |                       |                | eter Multipliers              |                | * Measuremen               | nts taken from     |                       |
| Depth of Well*                            |                               | 43.57 ft.             | 2 in. = 0.1    | ·                             |                | X                          | Top of Well Ca     | asina                 |
| Depth to Wate                             |                               | 24.94 ft.             | 4 in. = 0.6    | •                             |                |                            | Top of Protecti    | -                     |
| Length of Wat                             |                               | 18.63 ft.             | 6 in. = 1.4    | •                             |                |                            | 1                  | g                     |
| Pump Intake [                             |                               | 32 ft.                | 8 in. = 2.6    | •                             |                |                            | (Other, Specify    | y)                    |
| Well Diameter                             | : _                           | 4 in.                 |                |                               |                |                            | •                  |                       |
| Start Purge Ti                            | me:                           | 0910                  |                | indicate units                |                |                            |                    |                       |
| Elapsed<br>Time                           | Depth To<br>Water<br>(ft bmp) | Temperature (Celsius) | pH (SU)        | Specific Conductivity (mS/cm) | ORP<br>(mV)    | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU) | Flow Rate<br>(ml/min) |
| 0915                                      | 25.93                         | 14.82                 | 7.44           | 0.316                         | 127            | 0.00                       | 20.7               | 400                   |
| 0920                                      | 25.91                         | 15.09                 | 7.16           | 0.302                         | 79             | 0.00                       | 20.5               | 400                   |
| 0925                                      | 25.92                         | 14.90                 | 7.02           | 0.288                         | 22             | 0.00                       | 20.0               | 400                   |
| 0930                                      | 25.92                         | 14.61                 | 6.85           | 0.279                         | -6             | 0.00                       | 18.6               | 400                   |
| 0935                                      | 26.25                         | 14.63                 | 6.63           | 0.266                         | 53             | 0.00                       | 14.5               | 400                   |
| 0940                                      | 26.32                         | 14.69                 | 6.58           | 0.264                         | 99             | 0.00                       | 13.1               | 400                   |
| 0945                                      | 26.28                         | 14.88                 | 6.45           | 0.256                         | 181            | 0.00                       | 9.6                | 400                   |
| 0950                                      | 26.14                         | 15.20                 | 6.41           | 0.252                         | 186            | 0.00                       | 8.5                | 400                   |
| 0955                                      | 26.11                         | 15.03                 | 6.37           | 0.251                         | 191            | 0.00                       | 7.8                | 400                   |
| 1000                                      | 26.11                         | 15.11                 | 6.39           | 0.248                         | 195            | 0.00                       | 7.2                | 400                   |
| 1005                                      | 26.08                         | 15.22                 | 6.41           | 0.247                         | 196            | 0.00                       | 6.9                | 400                   |
|                                           |                               |                       |                |                               |                |                            |                    |                       |
|                                           |                               |                       |                |                               |                |                            |                    |                       |
|                                           |                               |                       |                |                               |                |                            |                    |                       |
|                                           |                               |                       |                |                               |                |                            |                    |                       |
|                                           |                               |                       |                |                               |                |                            |                    |                       |
|                                           |                               |                       |                |                               |                |                            |                    |                       |
|                                           |                               |                       |                |                               |                |                            |                    |                       |
|                                           |                               |                       |                |                               |                |                            |                    |                       |
| Stabilization                             | Δ ≤ 0.3'                      | ± 3%                  | ± 0.1          | ± 3%                          | ± 10 mV        | ± 10%                      | ± 10%              | 100 ≤ X ≤ 500         |
| End Purge Tin Water sample Time collected | 2RND4                         | 1005<br>_MW-5I_111315 |                | Total volume of               | . 0            | removed:                   | _<6.5 gal          |                       |
| i ilysicai appe                           |                               | lear                  |                |                               | i ilysical app | Color                      | Clear              |                       |
|                                           |                               | one                   | -              |                               |                | Odor                       | None               | •                     |
| Sheen/Free P                              | roduct N                      | one                   | -<br>-         |                               | Sheen/         | Free Product               | None               | •                     |
| Analytical Par                            | rameters:                     |                       |                |                               |                |                            |                    |                       |
| Container :                               | Size Co                       | ontainer Type         | # Collect      | ted Field                     | d Filtered     | Preservat                  | live               | Lab                   |
| 40 ml                                     |                               | Vial                  | 3              |                               | N              | HCL                        |                    | Accutest              |
| 500 ml<br>500 ml                          |                               | <u>Р</u><br>Р         | 1              | <u>_</u>                      | N / Y<br>N     | None<br>HNO3               | ,                  | Accutest Accutest     |
| 500 1111                                  |                               | <u> </u>              | !              |                               | IN             | HNOS                       |                    | Acculest              |
|                                           |                               |                       |                |                               |                |                            |                    |                       |
|                                           |                               |                       |                |                               |                |                            |                    |                       |
| Notes:                                    | •                             |                       |                |                               |                | _                          |                    |                       |
|                                           |                               |                       |                |                               |                |                            |                    |                       |
|                                           |                               |                       |                |                               |                |                            |                    |                       |
|                                           |                               |                       |                |                               |                |                            |                    |                       |

| OBRIEN   | 8 | GE | RE |
|----------|---|----|----|
| ODITIEIT |   |    |    |

|                                                                         | Dillera                                       | OGERE                                     |                |                                     |                        | iliu vvatei c                                              |                                         |                       |
|-------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|----------------|-------------------------------------|------------------------|------------------------------------------------------------|-----------------------------------------|-----------------------|
| Date:                                                                   | 11/12/2015                                    | Person                                    | nnel:          | K.Teitsma                           |                        | _ Weather:                                                 | r: Overcast 50's  MW-10S                |                       |
| Site Name:                                                              | Evor Phillips                                 | Pump                                      | /Controller ID | D#: Monsoon /                       | 0#: Monsoon / # 029687 |                                                            |                                         |                       |
| Site Location:                                                          | Old Bridge, N                                 | <br>J Sampl                               | ling Method:   | Lov                                 | w-Flow                 | Project #:                                                 | 51308                                   | 8                     |
|                                                                         | uip. Used (includ                             | _                                         | a U-52 #       | -                                   | 34/21780               | _ '                                                        |                                         |                       |
| Well informat                                                           |                                               | ,                                         | Well Diame     | eter Multipliers                    |                        | * Measuremer                                               | nts taken from                          |                       |
| Depth of Well*                                                          |                                               | 31.30 ft.                                 | 2 in. = 0.1    | ·                                   |                        | X                                                          | Top of Well Ca                          | asing                 |
| Depth to Wate                                                           | _                                             | 20.70 ft.                                 | 4 in. = 0.6    | -                                   |                        |                                                            | Top of Protect                          | -                     |
| Length of Wat                                                           |                                               | ft.                                       | 6 in. = 1.4    | -                                   |                        |                                                            | 1                                       | g                     |
| Pump Intake D                                                           | _                                             | 23 ft.                                    | 8 in. = 2.6    | -                                   |                        |                                                            | (Other, Specif                          | y)                    |
| Well Diameter                                                           | : <u> </u>                                    | <u>4</u> in.                              |                |                                     |                        |                                                            | <del>-</del>                            |                       |
| Start Purge Tir                                                         | me:                                           | 1410                                      |                | indicate units                      |                        |                                                            |                                         |                       |
| Elapsed<br>Time                                                         | Depth To<br>Water<br>(ft bmp)                 | Temperature (Celsius)                     | pH (SU)        | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)            | Dissolved<br>Oxygen (mg/l)                                 | Turbidity<br>(NTU)                      | Flow Rate<br>(ml/min) |
| 1415                                                                    | 20.70                                         | 15.50                                     | 5.73           | 0.668                               | 249                    | 2.90                                                       | 11.3                                    | 250                   |
| 1420                                                                    | 20.70                                         | 15.66                                     | 5.74           | 0.664                               | 251                    | 1.62                                                       | 11.2                                    | 250                   |
| 1425                                                                    | 20.70                                         | 15.73                                     | 5.74           | 0.659                               | 251                    | 0.43                                                       | 10.5                                    | 250                   |
| 1430                                                                    | 20.70                                         | 15.72                                     | 5.76           | 0.653                               | 250                    | 0.00                                                       | 8.0                                     | 250                   |
| 1435                                                                    | 20.70                                         | 15.73                                     | 5.77           | 0.650                               | 251                    | 0.00                                                       | 6.7                                     | 250                   |
| 1440                                                                    | 20.70                                         | 15.82                                     | 5.78           | 0.645                               | 252                    | 0.00                                                       | 6.4                                     | 250                   |
| 1445                                                                    | 20.70                                         | 15.72                                     | 5.77           | 0.634                               | 252                    | 0.00                                                       | 5.3                                     | 250                   |
| Stabilization  End Purge Tim  Water sample Time collected Physical appe | 2RND4 1. 1450 earance at start Color C Odor N | ± 3%  1450 _MW-10S_111215 _t lear one one | ± 0.1          | ± 3%                                | Physical app           | ± 10%  removed:  pearance at sam  Color Odor  Free Product | ± 10%  ~ 2.5 gal  pling Clear None None | 100 ≤ X ≤ 50          |
| Analytical Par                                                          |                                               | one                                       | _              |                                     | Sneen/                 | Free Product                                               | None                                    | <u>-</u>              |
| Container S                                                             |                                               | ontainer Type                             | # Collect      | ted Field                           | l Filtered             | Preserva                                                   | tive                                    | Lab                   |
| 40 ml                                                                   |                                               | Vial                                      | 6              |                                     | N                      | HCL                                                        |                                         | Accutest              |
| 500 ml                                                                  |                                               | Р                                         | 4              | 1                                   | N/Y                    | None                                                       |                                         | Accutest              |
| 500 ml                                                                  |                                               | Р                                         | 2              |                                     | N                      | HNO3                                                       |                                         | Accutest              |
|                                                                         |                                               |                                           |                |                                     |                        |                                                            |                                         |                       |
| Notes:                                                                  | DLIP collec                                   | ted : 2RND4_DUP                           | 111215         |                                     |                        |                                                            |                                         |                       |
| . 10.00                                                                 |                                               |                                           | _111210        |                                     |                        |                                                            |                                         |                       |

| Б | O'BRIEN | 8 GERE |
|---|---------|--------|
|---|---------|--------|

| Date:                             | 11/13/2015                 | Persor                   | nnel: K.Teitsma            |                          | Weather:        | Sunny 50's                 |                                  |                       |
|-----------------------------------|----------------------------|--------------------------|----------------------------|--------------------------|-----------------|----------------------------|----------------------------------|-----------------------|
| Site Name:                        | Evor Phillips              | -<br>Pump/               | Controller ID              | -                        |                 | —<br>Well #:               | MW-11I                           |                       |
|                                   | Old Bridge, NJ             | •                        | ing Method:                |                          | w-Flow          | Project #:                 | 51308                            |                       |
|                                   |                            | •                        | _                          | •                        | 84/21780        |                            | 31300                            |                       |
|                                   | ip. Used (include          | e ID#). HOITIDA          | a U-52 #                   |                          | 04/21/00        | * N.A                      |                                  |                       |
| Well informati                    |                            | 44.00 #                  |                            | eter Multipliers         |                 | * Measuremer               | 1                                | :                     |
| Depth of Well*:<br>Depth to Water |                            | 44.00 ft.<br>23.44 ft.   | 2 in. = 0.1<br>4 in. = 0.6 | -                        |                 | Х                          | Top of Well Ca<br>Top of Protect | =                     |
| Length of Water                   |                            | 23.44 II.<br>ft.         | 6 in. = 1.4                | -                        |                 |                            | Top of Protect                   | ive Casing            |
| Pump Intake D                     |                            | 30 ft.                   | 8 in. = 2.6                | -                        |                 |                            | Other, Specify                   | v)                    |
| Well Diameter:                    |                            | 4 in.                    |                            | 3                        |                 |                            | ](                               | ,,                    |
| Start Purge Tin                   | ne:                        | 0740                     | I .                        | indicate units           |                 |                            |                                  |                       |
| Elapsed<br>Time                   | Depth To<br>Water          | Temperature<br>(Celsius) |                            | Specific<br>Conductivity | ORP<br>(mV)     | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU)               | Flow Rate<br>(ml/min) |
| 0=4=                              | (ft bmp)                   |                          | pH (SU)                    | (mS/cm)                  |                 | 1                          |                                  |                       |
| 0745                              | 23.58                      | 14.16                    | 5.23                       | 0.212                    | 354             | 5.23                       | 52.0                             | 250                   |
| 0750                              | 23.58                      | 14.10                    | 4.77                       | 0.211                    | 382             | 4.50                       | 52.8                             | 300                   |
| 0755<br>0800                      | 23.58<br>23.54             | 14.28<br>14.16           | 4.71<br>4.68               | 0.211<br>0.211           | 389<br>396      | 0.00                       | 46.7<br>43.6                     | 300<br>300            |
| 0805                              | 23.54                      | 14.16                    | 4.67                       | 0.211                    | 403             | 0.00                       | 36.0                             | 300                   |
| 0810                              | 23.54                      | 14.13                    | 4.66                       | 0.211                    | 406             | 0.00                       | 30.9                             | 300                   |
| 0815                              | 23.54                      | 14.15                    | 4.66                       | 0.209                    | 408             | 0.00                       | 29.1                             | 300                   |
| 0010                              | 20.04                      | 14.10                    | 4.00                       | 0.200                    | 400             | 0.00                       | 20.1                             | 000                   |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
| Stabilization                     | Δ ≤ 0.3'                   | ± 3%                     | ± 0.1                      | ± 3%                     | ± 10 mV         | ± 10%                      | ± 10%                            | 100 ≤ X ≤ 500         |
| End Purge Tim                     | ie: 08                     | 320                      |                            |                          |                 |                            |                                  |                       |
| Water sample                      | : 2RND4                    | MW-11I_111315            |                            |                          |                 |                            |                                  |                       |
| Time collected                    | : 0820                     | _                        |                            | Total volume of          | purged water    | removed:                   | ~3 gal                           |                       |
|                                   | arance at start            |                          |                            |                          | Physical app    | pearance at sam            |                                  |                       |
|                                   | Color Cle                  |                          | -                          |                          |                 | Color                      | Clear                            | -                     |
| Sheen/Free Pr                     | Odor <u>No</u><br>oduct No |                          | -                          |                          | Choon/          | Odor<br>Free Product       | None<br>None                     | -                     |
|                                   |                            | 116                      | •                          |                          | Sileeii/        |                            | None                             | <u> </u>              |
| Analytical Par                    |                            | - 1 - ' T                | I # O - II 1               |                          | 1 E'lt 1        | D                          |                                  | Lab                   |
| Container S<br>40 ml              | oize Col                   | ntainer Type<br>Vial     | # Collect                  | ea Field                 | d Filtered<br>N | Preserva:<br>HCL           | live                             | Lab<br>Accutest       |
| 500 ml                            |                            | P                        | 2                          |                          | N/Y             | None                       |                                  | Accutest              |
| 500 ml                            |                            | Р                        | 1                          |                          | N               | HNO3                       |                                  | Accutest              |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
|                                   |                            |                          |                            |                          |                 |                            |                                  |                       |
| Notoo:                            |                            |                          |                            |                          |                 |                            |                                  |                       |
| Notes:                            |                            |                          |                            |                          |                 |                            |                                  |                       |

| <b>O'BRIEN</b> | 8 | GERE |
|----------------|---|------|
| OBINIEN        |   |      |

| Date: 11/12/2015 Person                                            |                               | nnel:                    | K.T                        | K.Teitsma                           |                    | L. Rain/Overcast 50's MW-14SS |                    |                       |
|--------------------------------------------------------------------|-------------------------------|--------------------------|----------------------------|-------------------------------------|--------------------|-------------------------------|--------------------|-----------------------|
| Site Name: Evor Phillips Pump/ Site Location: Old Bridge, NJ Sampl |                               | Controller ID            | D#: Monsoon /              | Monsoon / # 029687                  |                    |                               |                    |                       |
|                                                                    |                               | ing Method:              |                            | w-Flow                              | Well #: Project #: | 51308                         |                    |                       |
|                                                                    |                               | _                        |                            | 84/21780                            |                    | 31300                         |                    |                       |
|                                                                    |                               | ID#). HOITIDA            | a U-52 #                   |                                     | 04/21/00           | * N.A                         |                    |                       |
| Well informati                                                     |                               | 47.05.4                  |                            | eter Multipliers                    |                    | * Measuremer                  | 7                  | :                     |
| Depth of Well*                                                     |                               | 17.05 ft.<br>7.25 ft.    | 2 in. = 0.1<br>4 in. = 0.6 | -                                   |                    | Х                             | Top of Well Ca     | =                     |
| Depth to Water*:                                                   |                               | 7.25 II.                 | 6 in. = 1.4                | -                                   |                    |                               | Top of Protect     | ive Casing            |
| Length of Water Column:  Pump Intake Depth:                        |                               | 8 ft.                    | 8 in. = 2.6                | -                                   |                    |                               | (Other, Specify    | v)                    |
| Well Diameter:                                                     | · ·                           | 4 in.                    |                            | 3                                   |                    |                               | 1(, -, -, -, -,    | ,,                    |
| Start Purge Tir                                                    | ne:                           | 1205                     | 1                          | indicate units                      | 1                  |                               |                    |                       |
| Elapsed<br>Time                                                    | Depth To<br>Water<br>(ft bmp) | Temperature<br>(Celsius) | pH (SU)                    | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)        | Dissolved<br>Oxygen (mg/l)    | Turbidity<br>(NTU) | Flow Rate<br>(ml/min) |
| 1210                                                               | 7.29                          | 15.09                    | 6.10                       | 0.371                               | 235                | 1.13                          | 30.7               | 250                   |
| 1215                                                               | 7.29                          | 15.15                    | 5.89                       | 0.373                               | 246                | 0.92                          | 35.6               | 250                   |
| 1220                                                               | 7.29                          | 15.17                    | 5.86                       | 0.371                               | 251                | 0.85                          | 32.1               | 250                   |
| 1225                                                               | 7.29                          | 15.17                    | 5.83                       | 0.366                               | 257                | 0.80                          | 27.8               | 250                   |
| 1230                                                               | 7.29                          | 15.21                    | 5.80                       | 0.363                               | 261                | 0.98                          | 26.2               | 250                   |
| 1235                                                               | 7.29                          | 15.12                    | 5.79                       | 0.356                               | 266                | 1.02                          | 20.8               | 250                   |
| 1240                                                               | 7.29                          | 15.09                    | 5.78                       | 0.350                               | 270                | 1.11                          | 18.3               | 250                   |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |
| Stabilization                                                      | Δ ≤ 0.3'                      | ± 3%                     | ± 0.1                      | ± 3%                                | ± 10 mV            | ± 10%                         | ± 10%              | 100 ≤ X ≤ 500         |
| End Purge Tim                                                      | 12                            | 45                       |                            |                                     |                    |                               |                    |                       |
| •                                                                  |                               |                          | =                          |                                     |                    |                               |                    |                       |
| Water sample<br>Time collected                                     | _                             | /W-14SS_11121            | 0                          | Total volume of                     | nurged water       | removed:                      | ~ 2.5 gal          |                       |
| Physical appearance at start                                       |                               |                          | Total Volume of            | pling                               |                    |                               |                    |                       |
| Color Clear                                                        |                               | ar                       | _                          |                                     |                    | Color Clear                   |                    | _                     |
| Odor No                                                            |                               | ne                       | •                          |                                     |                    | Odor                          | None               | _                     |
| Sheen/Free Product No                                              |                               | ne                       | _ She                      |                                     | Sheen/             | Free Product                  | None               | -                     |
| Analytical Par                                                     |                               |                          |                            |                                     |                    |                               |                    |                       |
| Container S                                                        | Size Cor                      | Container Type           |                            | ed Field                            | Field Filtered     |                               | tive               | Lab                   |
| 40 ml                                                              |                               | Vial                     |                            | <u> </u>                            | N<br>N / V         | HCL<br>None                   |                    | Accutest              |
| 500 ml<br>500 ml                                                   |                               |                          | 2                          | <u> </u>                            | N/Y<br>N           |                               |                    | Accutest<br>Accutest  |
| 300 1111                                                           |                               | •                        | '                          |                                     | . 1                | HNO3                          |                    | , toodtoot            |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |
| Notes:                                                             |                               |                          |                            |                                     |                    |                               |                    |                       |
|                                                                    |                               |                          |                            |                                     |                    |                               |                    |                       |



| Date:                                                                                     | ate: <u>11/12/2015</u> Persor |                                                | nnel:        | K.T                                 | K.Teitsma               |                            | Overcast 50's      |                       |
|-------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------|--------------|-------------------------------------|-------------------------|----------------------------|--------------------|-----------------------|
|                                                                                           |                               | Controller ID                                  | #: Monsoon / | Monsoon / # 029687                  |                         | MW-14SD                    |                    |                       |
| <del></del>                                                                               |                               | ing Method:                                    | Lo           | Low-Flow                            |                         | 51308                      | 51308              |                       |
| ,                                                                                         | ·                             |                                                | a U-52 #     | ٠                                   | 84/21780                | Project #:                 |                    |                       |
| Well informati                                                                            |                               | 1511).                                         |              |                                     | I                       | * Measuremer               | nts taken from     |                       |
| Depth of Well*: 17.05 ft.                                                                 |                               | Well Diameter Multipliers 2 in. = 0.163 gal/ft |              |                                     | X Top of Well Casing    |                            | asing              |                       |
| Depth to Water*:                                                                          |                               | 7.29 ft.                                       | 4 in. = 0.65 | •                                   |                         |                            | Top of Protect     | =                     |
| Length of Water Column:                                                                   |                               | ft.                                            | 6 in. = 1.46 | •                                   |                         |                            | 1                  | Ū                     |
| Pump Intake Depth:                                                                        |                               | 13 ft.                                         | 8 in. = 2.61 | l1 gal/ft                           |                         | (Other, Specify)           |                    |                       |
| Well Diameter:                                                                            |                               | <u>4</u> in.                                   |              |                                     |                         |                            |                    |                       |
| Start Purge Tin                                                                           | ne:                           | 1250                                           |              | indicate units                      |                         |                            |                    |                       |
| Elapsed<br>Time                                                                           | Depth To<br>Water<br>(ft bmp) | Temperature<br>(Celsius)                       | pH (SU)      | Specific<br>Conductivity<br>(mS/cm) | ORP<br>(mV)             | Dissolved<br>Oxygen (mg/l) | Turbidity<br>(NTU) | Flow Rate<br>(ml/min) |
| 1255                                                                                      | 7.29                          | 14.76                                          | 5.89         | 0.373                               | 253                     | 0.00                       | 22.7               | 250                   |
| 1300                                                                                      | 7.29                          | 14.76                                          | 5.92         | 0.359                               | 223                     | 0.00                       | 22.6               | 250                   |
| 1305                                                                                      | 7.29                          | 14.78                                          | 5.83         | 0.334                               | 226                     | 0.17                       | 22.6               | 250                   |
| 1310                                                                                      | 7.29                          | 14.86                                          | 5.83         | 0.331                               | 233                     | 0.76                       | 19.7               | 250                   |
| 1315                                                                                      | 7.29                          | 14.89                                          | 5.81         | 0.327                               | 238                     | 1.13                       | 17.7               | 250                   |
| 1320                                                                                      | 7.29                          | 14.72                                          | 5.80         | 0.328                               | 240                     | 1.35                       | 15.4               | 250                   |
| 1325                                                                                      | 7.29                          | 14.75                                          | 5.80         | 0.330                               | 243                     | 1.47                       | 13.4               | 250                   |
| 1330                                                                                      | 7.29                          | 15.00                                          | 5.80         | 0.332                               | 243                     | 1.51                       | 12.6               | 250                   |
|                                                                                           |                               |                                                |              |                                     |                         |                            |                    |                       |
|                                                                                           |                               |                                                |              |                                     |                         |                            |                    |                       |
|                                                                                           |                               |                                                |              |                                     |                         |                            |                    |                       |
|                                                                                           |                               |                                                |              |                                     |                         |                            |                    |                       |
|                                                                                           |                               |                                                |              |                                     |                         | 1                          |                    |                       |
|                                                                                           |                               |                                                |              |                                     |                         |                            |                    |                       |
|                                                                                           |                               |                                                |              |                                     |                         |                            |                    |                       |
|                                                                                           |                               |                                                |              |                                     |                         |                            |                    |                       |
|                                                                                           |                               |                                                |              |                                     |                         |                            |                    |                       |
|                                                                                           |                               |                                                |              |                                     |                         |                            |                    |                       |
| Stabilization                                                                             | Δ ≤ 0.3'                      | ± 3%                                           | ± 0.1        | ± 3%                                | ± 10 mV                 | ± 10%                      | ± 10%              | 100 ≤ X ≤ 500         |
| End Purge Tim                                                                             | e: 13                         | 35                                             |              |                                     |                         |                            |                    |                       |
| Water sample                                                                              |                               |                                                | E: ODNIDA M  | W 148D 11101                        | E MC: ODNID             | 4_MW-14SD_111              | 21E MCD            |                       |
| Time collected:                                                                           |                               | 100-143D_11121                                 |              | Total volume of                     |                         |                            | ~ 3 gal            |                       |
|                                                                                           | arance at start               |                                                |              |                                     | -                       | earance at sam             |                    |                       |
| Color         Clear           Odor         None           Sheen/Free Product         None |                               | Color Clear                                    |              |                                     |                         |                            | _                  |                       |
|                                                                                           |                               |                                                | •            |                                     |                         | Odor                       | None               | _                     |
|                                                                                           |                               | ie                                             |              |                                     | Sheen/Free Product      |                            | None               |                       |
| Analytical Para                                                                           |                               |                                                |              |                                     |                         |                            |                    |                       |
| Container S                                                                               | Size Con                      | Container Type Vial P                          |              | ed Field                            | Field Filtered  N N / Y |                            | tive               | Lab                   |
| 40 ml                                                                                     |                               |                                                |              | -                                   |                         |                            |                    | Accutest Accutest     |
| 500 ml                                                                                    |                               | P                                              |              | -                                   | N N                     |                            |                    | Accutest              |
|                                                                                           |                               |                                                | 3            |                                     |                         | HNO3                       |                    |                       |
|                                                                                           |                               |                                                |              |                                     |                         |                            |                    |                       |
|                                                                                           |                               |                                                | 1            |                                     |                         |                            |                    |                       |
| Notes:                                                                                    |                               | /MSD collected                                 |              |                                     |                         |                            |                    |                       |

Attachment 4

Ascorbic Acid

Preservation Comparison

Graphs









# Attachment 5 Groundwater Results Trend Graphs



































# Attachment 6 Groundwater Elevation Contour Maps









# **Attachment 7**

CPS/Madison Property
Wells Groundwater
Results Trend Graphs













Attachment 8

Data Validation Report

### **MEMORANDUM**

TO: J. Levesque cc: J. Lehigh

**FROM:** K. Storne

Evor Phillips Leasing Company (EPLC) Superfund Site, OU3

**RE:** Post-Injection Round 2 Performance Groundwater

Sampling Monitoring Events, Data Validation Report

**FILE:** 1976/51308.007.001/.002/.003/.004

**DATE:** January 8, 2016

This report presents the data validation results performed for environmental samples collected in July, September, October and November 2015 for the Post-Injection Round 2 Performance Groundwater Monitoring Events as part of the OU3-Site Groundwater Remedial Action at the Evor Phillips Leasing Company (EPLC) Superfund Site in Old Bridge Township, New Jersey.

#### SAMPLE AND VALIDATION SUMMARY

The environmental samples collected for this effort consisted of groundwater samples, matrix spike/matrix spike duplicate, field duplicate, field blanks and trip blanks. Samples were analyzed by Accutest Laboratories of Dayton, New Jersey (Accutest New Jersey).

The laboratory utilized the methods listed in Table 1 for sample analyses.

| <b>Table 1.</b> Analytical methods and | le 1. Analytical methods and references |           |
|----------------------------------------|-----------------------------------------|-----------|
| Parameter                              | Methods                                 | Reference |
| VOCs                                   | USEPA Methods8000C/5030B/8260C          | 1         |
| Metals                                 | USEPA Methods 3010A/6010C               | 2         |
| Sulfate                                | USEPA Method 9056A/300.0                | 2/4       |
| TDS                                    | SM20 2540C                              | 3         |

#### Note:

VOCs indicates volatile organic compounds.

TDS indicates total dissolved solids.

- United States Environmental Protection Agency (USEPA). 2006. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846, 3rd Edition. Washington D.C.
- 2. USEPA. 2007. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846, 3rd Edition, Update IV. Washington D.C.
- 3. AWWA, APHA, WEF. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edition. Washington, D.C.
- 4. USEPA. 1993a. Methods for the Determination of Inorganic Substances in Environmental Samples, EPA-600/R-93/100. Washington, D.C.

The laboratory data packages included summary forms for quality control analysis and supportive raw data.

The samples submitted for data review are summarized in the attached Table 2. Table 3 presents the specific data validation approach applied to data generated. Table 4 presents the Laboratory quality assurance/quality control (QA/QC) analyses definitions.

In accordance with the approved RDR/RAWP, full validation was performed on 10 percent of the samples collected and submitted for validation. This consisted of a review of data summary forms and raw analytical data provided in the data packages. Partial validation was performed on the remaining data. Partial data quality review consists of a review of only analytical QC summary forms that are included in the data package. The forms and the information on the forms are not evaluated for accuracy or completeness during partial data validation.

The analytical data generated for this investigation were evaluated by O'Brien & Gere using the QA/QC criteria established in the methods utilized by the laboratories and the following document:

 O'Brien & Gere. 2014. Uniform Federal Policy Quality Assurance Project Plan, Operable Unit 3 (OU3) – Site Groundwater Evor Phillips Leasing Company (EPLC) Superfund Site, Old Bridge Township, New Jersey. Edison, New Jersey. (QAPP)

Data affected by excursions from these criteria were qualified using professional judgment and the general validation approach provided in the following validation guideline documents, modified to reflect the requirements of the methods utilized by the laboratories:

- New Jersey Department of Environmental Protection (NJDEP). 2001a. Standard Operating Procedure (SOP) for Analytical Data Validation of Target Analyte List (TAL) – Inorganics, SOP No. 5.A.2. Trenton, New Jersey
- NJDEP. 2001b. Standard Operating Procedures for the Quality Assurance Data Validation of Analytical Deliverables – TCL- Organics (based on the USEPA SOW OLM04.2 with Revisions), SOP No. 5.A.13. Trenton, New Jersey

The application of these validation guidelines has been modified to reflect the requirements of the methods utilized by the laboratory.

In accordance with the NJDEP guidance, and utilizing professional judgment, the following qualifiers are used in this type of data review:

- "U" Indicates that the analyte was analyzed for, but was not detected.
- "J" Indicates that the result should be considered to be an estimated value. This qualifier is used when the data validation process identifies a deficiency in the data generation process.
- "UJ" Indicates that the sample-specific reporting limit for the analyte in this sample should be considered approximate. This qualifier is used when the data validation process identifies a deficiency in the data generation process.
- "R" Indicates that the reporting limit or sample result has been determined to be unusable due to a major deficiency in the data generation process. The data should not be used for any qualitative or quantitative purposes.

In addition, in accordance with the NJDEP guidance, the following single word descriptors were added to analyte results if the reported analyte required a quality assurance action.

- Qualify (Q) used when the results of a given analyte in a sample do not meet all QA/QC criteria but the deficiencies are not severe enough to warrant data rejection.
- Negate (N) used when the presence of a given analyte in a sample can be attributed to the laboratory/field introduced contamination.
- Reject (R) used when the results of a given analyte in a sample do not meet all QA/QC criteria so that the qualitative presence and/or quantitation of that analyte in the sample cannot be determined with any degree of confidence.

Footnotes, based on the NJDEP validation guidance, were applied to each qualifier to define the type of excursion that affected the sample result, resulting in the qualification of the data. The footnote used in this validation are presented in Table 5 below.

| Table 5. Valid | lidation Footnote Definitions                                                                                          |  |
|----------------|------------------------------------------------------------------------------------------------------------------------|--|
| Footnote       | Type of Excursion                                                                                                      |  |
| 19             | The reported metal value was qualified because the spike recovery was between 25 and 74 percent.                       |  |
| 25             | The reported metal value was qualified because the Serial Dilution was not within ten percent of sample concentration. |  |
| 35A            | Result was qualified due to a holding time excursion.                                                                  |  |
| 39             | The reported concentration is quantitative qualified because the concentration is below the RL.                        |  |
| 81B            | Results are qualified due to surrogate analysis excursion.                                                             |  |
| 90             | Results are qualified due to field duplicate excursions.                                                               |  |
| 91             | Results are qualified due to calibration excursions.                                                                   |  |

The following parameters were evaluated, where applicable:

- QAPP compliance
- Documentation completeness
- Chain-of-custody record
- Sample collection
- Sample preservation
- Holding times
- Calibrations (Full validation only)
- Blank analysis
- Matrix spike/ matrix spike duplicate (MS/MSD) analysis
- Laboratory Control Sample (LCS) analysis
- Field duplicate analysis
- Surrogate recovery
- Internal standards performance
- Gas chromatography/mass spectrometry (GC/MS) instrument performance check (Full validation only)
- Inductively coupled plasma (ICP) interference check analysis (Full validation only)
- ICP serial dilution analysis
- Laboratory duplicate analysis
- Target analyte quantitation, identification, and quantitation limits (QLs) (Full validation only)

The following sections of this memorandum present the results of the comparison of the analytical data to the QA/QC criteria specified above.

#### **SAMPLE PRESERVATION**

The pH values for the following samples submitted for VOC analysis, were greater than the preservations requirement of less than 2 due to sample matrix:

- 2RND2\_ISCO-MW-8\_091615
- 2RND2\_ISCO-MW-3\_091615
- 2RND2\_ISCO-MW-2\_091615
- 2RND1\_ISCO-MW-2\_072215
- 2RND1\_ISCO-MW-8\_072215
- 2RND1\_IW-1BT2\_072315
- 2RND1\_ISCO-MW-2\_072215 ASC
- 2RND1\_ISCO-MW-3\_072315
- 2RND1\_ISCO-MW-3\_072315 ASC

- 2RND3\_ISCO-MW-8\_101515
- 2RND3\_ISCO-MW-2\_101615
- 2RND4\_ISCO-MW-8\_111315
- 2RND4 ISCO-MW-2 111315

Validation actions are addressed in the following section.

#### CHAIN OF CUSTODY RECORD

For samples collected 7/22/15 to 7/23/15, the following samples were not included on the record but were received by the laboratory and were analyzed and reported as directed by O'Brien & Gere:

- 2RND1\_MW-9\_072215 ASC
- 2RND1\_ISCO-MW-5\_072215 ASC
- 2RND1 ISCO-MW-2 072215 ASC
- 2RND1\_ISCO-MW-3\_072315 ASC

For sample 2RND1\_ISCO-MW-3\_072315 ASC, the field identification was incorrectly documented in the data package as 2RND1\_ISCO-MW-3\_072215 ASC.

#### **VOC DATA EVALUATION SUMMARY**

The following QA/QC parameters were found to meet method and validation criteria or did not result in additional qualification of sample results:

- QAPP compliance
- Documentation completeness
- Sample collection
- Blank analysis
- MS/MSD analysis
- LCS analysis
- Field duplicate analysis
- Internal standards performance
- GC/MS instrument performance check (Full validation only)
- Target analyte identification

Excursions from method or validation criteria were not identified during the validation process. Additional observations are described below.

#### I. Holding times

For the following samples, since the pH values were greater than the preservations requirement of less than 2 and the samples were analyzed outside of the seven day holding time requirement, the samples were qualified as approximate (UJ, J, 35A):

- 2RND2 ISCO-MW-2 091615
- 2RND1\_ISCO-MW-3\_072315
- 2RND1 ISCO-MW-2 072215 ASC
- 2RND1\_ISCO-MW-3\_072315 ASC
- 2RND3 ISCO-MW-8 101515
- 2RND3 ISCO-MW-2 101615.

#### II. Surrogate recovery

Results for the following samples were qualified as approximate (UJ, J, 81B) due to minor surrogate recovery accuracy excursions

PAGE 4

VOCs in samples 2RND2\_ISCO-MW-8\_091615, 2RND1\_ISCO-MW-2\_072215, 2RND1\_ISCO-MW-8\_072215 and 2RND1\_ISCO-MW-3\_072315.

#### III. Calibration

Results for the following samples were qualified as approximate (UJ, J, 91) due to minor calibration response factor accuracy excursions:

- Acetone and methyl acetate in samples 2RND2\_ISCO-MW-4\_091515, 2RND2\_MW-10S\_091515, 2RND2\_ISCO-MW-9\_091515, 2RND2\_ISCO-MW-5\_091515, 2RND2\_FB\_091515, 2RND2\_IB1-BT-2\_091615, 2RND2\_DUP\_091615 [2RND2\_IB1-BT-2\_091615], 2RND2\_ISCO-MW-3\_091615, 2RND2\_ISCO-MW-8\_091615, 2RND2\_FB\_091615, 2RND2\_TRIPBLANK, 2RND2\_ISCO-MW-2\_091615, 2RND2\_MW-14SD\_091515 and 2RND2\_MW-14SS\_091515.
- 2-Butanone, 2-hexanone and methyl acetate in sample 2RND2\_ISCO-MW-7\_091515.
- 2-Butanone and 2-hexanone in samples 2RND1\_MW-14SS\_072215, 2RND1\_MW-14SD\_072215, 2RND1\_ISCO-MW-4\_072215, 2RND1\_MW-10S\_072215, 2RND1\_ISCO-MW-5-072215, 2RND1\_ISCO-MW-7\_072215, 2RND1\_ISCO-MW-2-072215, 2RND1\_ISCO-MW-8\_072215, TRIPBLANK\_072215, 2RND1\_FB\_072215, 2RND1\_IW-1-BT2\_072315, TRIPBLANK\_072315, 2RND1\_FB\_072315, 2RND1\_DUP\_072215 [2RND1\_ISCO-MW-5\_072215] and 2RND1\_ISCO-MW-3\_072315.
- 2-Butanone in samples 2RND1\_MW-9\_072215 ASC, 2RND1\_ISCO-MW-5-072215 ASC and 2RND1\_ISCO-MW-3\_072315.
- Acetone in samples 2RND3\_DUP\_101515 [2RND3\_ISCO-MW-9\_101515], 2RND3\_ISCO-MW-5\_101615, 2RND3\_IW1-BT-2\_101615, 2RND3\_ISCO-MW-2\_101615, 2RND3\_ISCO-MW-4\_101515, 2RND3\_MW-14SS\_101515, 2RND3\_MW-14SD\_101515, 2RND3\_FB\_101515, 2RND3\_MW-10S\_101615, 2RND3\_ISCO-MW-2\_101615, 2RND3\_FB\_101615 and 2RND3\_TRIPBLANK.
- Methyl acetate, 2-butanone and 2-hexanone in samples 2RND3\_DUP\_101515 [2RND3\_ISCO-MW-9\_101515], 2RND3\_ISCO-MW-5\_101615 and 2RND3\_IW1-BT-2\_101615.
- Acetone, methyl acetate, 2-butanone and 2-hexanone in samples 2RND4\_IW1-DR-1\_111215, 2RND4\_ISCO-MW-4\_111215, 2RND4\_IW1-BT-2\_111215, 2RND4\_MW-14SS\_111215, 2RND4\_MW-14SD\_111215, 2RND4\_MW-10S\_111215, 2RND4\_ISCO-MW-9\_111215, 2RND4\_ISCO-MW-3\_111215, 2RND4\_DUP\_111215[2RND4\_ISCO-MW-10\_101215], 2RND4\_FB\_111215, 2RND4\_MW-11I\_111315, 2RND4\_ISCO-MW-8\_111315, 2RND4\_ISCO-MW-7\_111315, 2RND4\_MW-5I\_111315, 2RND4\_PZ-1S\_111315, 2RND4\_ISCO-MW-2\_111315, 2RND4\_ISCO-MW-1\_111315, 2RND4\_ISCO-MW-5\_111315, 2RND4\_ISCO-MW-6\_111315, 2RND4\_FB\_111315 and 2RND4\_TRIPBLANK.
- Methyl acetate and 2-butanone in samples 2RND3\_ISCO-MW-2\_101615, 2RND3\_ISCO-MW-4\_101515, 2RND3\_MW-14SS\_101515, 2RND3\_MW-14SD\_101515, 2RND3\_FB\_101515, 2RND3\_ISCO-MW-2\_101615, 2RND3\_FB\_101615 and 2RND3\_TRIPBLANK.
- Acetone and 2-butanone in samples 2RND3\_ISCO-MW-9\_101515, 2RND3\_ISCO-MW-7\_101515, 2RND3\_ISCO-MW-3\_101515 and RND3\_ISCO-MW-8\_101515.

Results for the following samples were qualified as approximate (UJ, J, 91) due to minor calibration accuracy excursions:

Dichlorofluoromethane, Trichlorofluoromethane, carbon tetrachloride and bromoform in samples 2RND2\_ISCO-MW-4\_091515, 2RND2\_MW-10S\_091515, 2RND2\_ISCO-MW-9\_091515, 2RND2\_ISCO-MW-5\_091515, 2RND2\_FB\_091515, 2RND2\_IB1-BT-2\_091615, 2RND2\_DUP\_091615 [2RND2\_IB1-BT-2\_091615], 2RND2\_ISCO-MW-3\_091615, 2RND2\_ISCO-MW-8\_091615, 2RND2\_FB\_091615 and 2RND2\_TRIPBLANK.

- Dichlorofluoromethane, Freon 113, carbon tetrachloride and bromoform in sample 2RND2\_ISCO-MW-2\_091615.
- 2-Hexanone and acetone in samples 2RND2\_MW-14SD\_091515 and 2RND2\_MW-14SS\_091515.
- Tetrachloroethene in samples 2RND1\_MW-14SS\_072215, 2RND1\_MW-14SD\_072215, 2RND1\_ISCO-MW-4\_072215 and 2RND1\_MW-10S\_072215.
- Dichlorodifluoromethane in samples 2RND1\_MW-9\_072215, 2RND1\_DUP\_072215 [2RND1\_ISCO-MW-5\_072215] and 2RND1\_ISCO-MW-3\_072315.
- 1,4-Dioxane and Freon 113 in samples 2RND3\_DUP\_101515[2RND3\_ISCO-MW-9\_101515], 2RND3\_ISCO-MW-5\_101615 and 2RND3\_IW1-BT-2\_101615.

#### IV. Target analyte quantitation and detection limits

Samples were analyzed using dilutions due to elevated concentrations of target analytes.

Sample results with concentrations greater than the method detection limits (MDL) but less than the QL were flagged as approximate (J) by the laboratory. This flag was retained during the validation process to indicate the data is approximate (J, 39).

#### METALS, SULFATE and TDS DATA EVALUATION SUMMARY

The following QA/QC parameters were found to meet method and validation criteria or did not result in additional qualification of sample results (where applicable):

- QAPP compliance
- Documentation completeness
- Sample collection
- Sample preservation
- Holding times
- Calibrations (Full validation only)
- Blank analysis
- LCS analysis
- Internal standard performance
- ICP interference check analysis (Full validation only)
- Laboratory duplicate analysis

Excursions from method or validation criteria were not identified during the validation process. Additional observations are described below.

#### I. MS/MSD analysis

Results for the following samples were qualified as approximate (J, 19) due to minor MS accuracy excursions:

Sulfate in samples 2RND1\_MW-14SS\_072215, 2RND1\_MW-14SD\_072215, 2RND1\_ISCO-MW-4\_072215, 2RND1\_MW-10S\_072215, 2RND1\_ISCO-MW-5-072215, 2RND1\_ISCO-MW-7\_072215, 2RND1\_ISCO-MW-2-072215, 2RND1\_ISCO-MW-8\_072215, 2RND1\_IW-1-BT2\_072315, 2RND1\_MW-9\_072215, 2RND1\_DUP\_072215 [2RND1\_ISCO-MW-5\_072215] and 2RND1\_ISCO-MW-3\_072315.

#### II. Field duplicate analysis

Results for the following samples were qualified as approximate (UJ, J, 90) due to minor field duplicate precision excursions:

Chromium in samples 2RND3\_ISCO-MW-4-101515, 2RND3\_MW-14SS\_101515, 2RND3\_MW-14SD\_101515, 2RND3\_ISCO-MW-9\_101515, 2RND3\_ISCO-MW-7\_101515, 2RND3\_ISCO-MW-3\_101515, 2RND3\_ISCO-MW-8\_101515, 2RND3\_DUP\_101515[2RND3-ISCO-MW-9\_101515], 2RND3\_MW-10S\_101615, 2RND3\_ISCO-MW-5\_101615, 2RND3\_IW1-BT-2\_101615, 2RND3\_ISCO-MW-2\_101615, 2RND4\_IW1-DR-1\_111215, 2RND4\_ISCO-MW-4\_111215, 2RND4\_IW1-BT-2\_111215, 2RND4\_MW-14SS\_111215, 2RND4\_MW-14SD\_111215, 2RND4\_MW-10S\_111215, 2RND4\_ISCO-MW-9\_111215, 2RND4\_ISCO-MW-3\_111215, 2RND4\_ISCO-MW-10\_101215], 2RND4\_MW-11I\_11315, 2RND4\_ISCO-MW-8\_111315, 2RND4\_ISCO-MW-7\_111315, 2RND4\_ISCO-MW-5\_111315, 2RND4\_ISCO-MW-6\_111315.

#### III. ICP Serial dilution analysis

Results for the following samples were qualified as approximate (J, 25) due to a minor serial dilution accuracy excursion:

Sodium in samples 2RND2\_ISCO-MW-4-091515, 2RND2\_MW-14SD\_091515, 2RND2\_MW-14SS\_091515, 2RND2\_MW-10S\_091515, 2RND2\_ISCO-MW-9\_091515, 2RND2\_ISCO-MW-5\_091515, 2RND2\_ISCO-MW-7\_091515, 2RND2\_IB1-BT-2\_091615, 2RND2\_DUP\_091616 [2RND2\_IB1-BT-2\_091615], 2RND2\_ISCO-MW-3\_091615, 2RND2\_ISCO-MW-2\_091615 and 2RND2\_ISCO-MW-8\_091615.

#### IV. Target analyte quantitation and QLs

Results for metals and inorganics were reported to the QL concentration.

Metals and sulfate were reported using dilutions due to elevated concentrations of target analytes.

#### **DATA USABILITY**

The data from the samples on Table 2 were evaluated based on QA/QC criteria established by the methods listed in Table 1 and the data validation approach as described in Table 3.

Major deficiencies in the data generation process would have resulted in data points being rejected, indicating that the data are considered unusable for either quantitative or qualitative purposes. Major deficiencies were not identified during the validation process. Minor deficiencies in the data generation process would have resulted in sample data being characterized as approximate or non-detected. Minor deficiencies were not identified during the validation process.

A discussion of the data quality with regard to the data usability parameters follows:

<u>Precision</u>: Data were not rejected for precision excursions.

<u>Sensitivity</u>: Sensitivity is established by QLs, which represent measurable concentrations of analytes which can be determined with a designated level of confidence, that meet project requirements. Dilutions were performed for analyses due to elevated concentrations of target analytes in the samples.

Accuracy: Data were not rejected for accuracy excursions.

Representativeness: Data were not rejected for representativeness excursions.

<u>Comparability</u>: Data usability with respect to comparability is 100 percent, as standardized analytical methods, QLs, reference materials, and data deliverables were used throughout the data generation process for this project.

<u>Completeness</u>: Based on the samples submitted for data validation, overall data usability was 100 percent with respect to completeness; therefore, the usability met the QAPP requirement of usable for qualitative and quantitative purposes.

Table 2. Sample Cross Reference Table

| Samples colle      | cted and subm          | itted for data validation                                  |                              |             |                            |
|--------------------|------------------------|------------------------------------------------------------|------------------------------|-------------|----------------------------|
| Laboratory<br>Name | Date<br>Collected      | Client Identification                                      | Laboratory<br>Identification | Matrix      | Analysis Requested         |
| Accutest           | 22-Jul-15              | 2RND1_MW-14SS_072215                                       | JB99691-1                    | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 22-Jul-15              | 2RND1_MW-14SS_072215-FILTERED                              | JB99691-1F                   | Groundwater | Metals                     |
| Accutest           | 22-Jul-15              | 2RND1_MW-14SD_072215                                       | JB99691-2                    | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 22-Jul-15              | 2RND1_MW-14SD_072215-FILTERED                              | JB99691-2F                   | Groundwater | Metals                     |
| Accutest           | 22-Jul-15              | 2RND1_MW-9_072215                                          | JB99691-3                    | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 22-Jul-15              | 2RND1_MW-9_072215-FILTERED                                 | JB99691-3F                   | Groundwater | Metals                     |
| Accutest           | 22-Jul-15              | 2RND1_ISCO-MW-4_072215                                     | JB99691-4                    | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 22-Jul-15              | 2RND1_ISCO-MW-4_072215-FILTERED                            | JB99691-4F                   | Groundwater | Metals                     |
| Accutest           | 22-Jul-15              | 2RND1_MW-10S_072215                                        | JB99691-5                    | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 22-Jul-15              | 2RND1_MW-10S_072215-FILTERED                               | JB99691-5F                   | Groundwater | Metals                     |
| Accutest           | 22-Jul-15              | 2RND1_ISCO-MW-5_072215                                     | JB99691-6                    | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 22-Jul-15              | 2RND1_ISCO-MW-5_072215-FILTERED                            | JB99691-6F                   | Groundwater | Metals                     |
| Accutest           | 22-Jul-15              | 2RND1_DUP_072215[2RND1_ISCO-MW-5_072215]                   | JB99691-7                    | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 22-Jul-15              | 2RND1_DUP_072215-FILTERED[2RND1_ISCO-MW-5_072215-FILTERED] | JB99691-7F                   | Groundwater | Metals                     |
| Accutest           | 22-Jul-15              | 2RND1 ISCO-MW-7 072215                                     | JB99691-8                    | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 22-Jul-15              | 2RND1 ISCO-MW-7 072215-FILTERED                            | JB99691-8F                   | Groundwater | Metals                     |
| Accutest           | 22-Jul-15              | 2RND1 ISCO-MW-2 072215                                     | JB99691-9                    | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 22-Jul-15              | 2RND1 ISCO-MW-2 072215-FILTERED                            | JB99691-9F                   | Groundwater | Metals                     |
| Accutest           | 22-Jul-15              | 2RND1_ISCO-MW-8_072215                                     | JB99691-10                   | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 22-Jul-15              | 2RND1 ISCO-MW-8 072215-FILTERED                            | JB99691-10F                  | Groundwater | Metals                     |
| Accutest           | 23-Jul-15              | TRIPBLANK 072215                                           | JB99691-11                   | Aqueous     | VOCs                       |
| Accutest           | 22-Jul-15              | 2RND1 FB 072215                                            | JB99691-12                   | Aqueous     | VOCs, Metals, Sulfate, TDS |
| Accutest           | 22-Jul-15<br>22-Jul-15 | 2RND1_FB_072215-FILTERED                                   | JB99691-12F                  |             | Metals                     |
| Accutest           | 23-Jul-15              | 2RND1 ISCO-MW-3 072315                                     | JB99691-13                   | Aqueous     | <u> </u>                   |
|                    | 23-Jul-15<br>23-Jul-15 |                                                            |                              | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           |                        | 2RND1_ISCO-MW-3_072315-FILTERED                            | JB99691-13F                  | Groundwater | Metals                     |
| Accutest           | 23-Jul-15              | 2RND1_IW-1-BT2_072315, MS/MSD                              | JB99691-14                   | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 23-Jul-15              | 2RND1_IW-1-BT2_072315-FILTERED, MS/MSD                     | JB99691-14F                  | Groundwater | Metals                     |
| Accutest           | 23-Jul-15              | TRIPBLANK                                                  | JB99691-15                   | Aqueous     | VOCs Manala Salfata TDS    |
| Accutest           | 23-Jul-15              | 2RND1_FB_072315                                            | JB99691-16                   | Aqueous     | VOCs, Metals, Sulfate, TDS |
| Accutest           | 23-Jul-15              | 2RND1_FB_072315-FILTERED                                   | JB99691-16F                  | Aqueous     | Metals                     |
| Accutest           | 23-Jul-15              | 2RND1_MW-9_072215 ASC                                      | JB99691-17                   | Groundwater | VOCs                       |
| Accutest           | 23-Jul-15              | 2RND1_ISCO-MW-5_072215 ASC                                 | JB99691-18                   | Groundwater | VOCs                       |
| Accutest           | 23-Jul-15              | 2RND1_ISCO-MW-2_072215 ASC                                 | JB99691-19                   | Groundwater | VOCs                       |
| Accutest           | 23-Jul-15              | 2RND1_ISCO-MW-3_072215 ASC                                 | JB99691-20                   | Groundwater | VOCs                       |
| Accutest           | 15-Oct-15              | 2RND3_ISCO-MW-4_101515                                     | JC6498-1                     | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 15-Oct-15              | 2RND3_ISCO-MW-4_101515-FILTERED                            | JC6498-1F                    | Groundwater | Metals                     |
| Accutest           | 15-Oct-15              | 2RND3_MW-14SS_101515                                       | JC6498-2                     | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 15-Oct-15              | 2RND3_MW-14SS_101515-FILTERED                              | JC6498-2F                    | Groundwater | Metals                     |
| Accutest           | 15-Oct-15              | 2RND3_MW-14SD_101515                                       | JC6498-3                     | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 15-Oct-15              | 2RND3_MW-14SD_101515-FILTERED                              | JC6498-3F                    | Groundwater | Metals                     |
| Accutest           | 15-Oct-15              | 2RND3_ISCO-MW-9_101515                                     | JC6498-4                     | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 15-Oct-15              | 2RND3_ISCO-MW-9_101515-FILTERED                            | JC6498-4F                    | Groundwater | Metals                     |
| Accutest           | 15-Oct-15              | 2RND3_ISCO-MW-7_101515                                     | JC6498-5                     | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 15-Oct-15              | 2RND3_ISCO-MW-7_101515-FILTERED                            | JC6498-5F                    | Groundwater | Metals                     |
| Accutest           | 15-Oct-15              | 2RND3_ISCO-MW-3_101515                                     | JC6498-6                     | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 15-Oct-15              | 2RND3_ISCO-MW-3_101515-FILTERED                            | JC6498-6F                    | Groundwater | Metals                     |
| Accutest           | 15-Oct-15              | 2RND3_ISCO-MW-8_101515                                     | JC6498-7                     | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 15-Oct-15              | 2RND3_ISCO-MW-8_101515-FILTERED                            | JC6498-7F                    | Groundwater | Metals                     |
| Accutest           | 15-Oct-15              | 2RND3_FB_101515                                            | JC6498-8                     | Aqueous     | VOCs, Metals, Sulfate, TDS |
| Accutest           | 15-Oct-15              | 2RND3_FB_101515-FILTERED                                   | JC6498-8F                    | Aqueous     | Metals                     |
| Accutest           | 15-Oct-15              | 2RND3_DUP_101515[2RND3_ISCO-MW-9_101515]                   | JC6498-9                     | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 15-Oct-15              | 2RND3_DUP_101515-FILTERED[2RND3_ISCO-MW-9_101515-FILTERED] | JC6498-9F                    | Groundwater | Metals                     |
| Accutest           | 16-Oct-15              | 2RND3_MW-10S_101615, MS/MSD                                | JC6498-10                    | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest           | 16-Oct-15              | 2RND3_MW-10S_101615-FILTERED, MS/MSD                       | JC6498-10F                   | Groundwater | Metals                     |
| Accutest           | 16-Oct-15              | 2RND3_ISCO-MW-5_101615                                     | JC6498-11                    | Groundwater | VOCs, Metals, Sulfate, TDS |
|                    |                        |                                                            |                              |             |                            |

| Accutest | 16-Oct-15  | 2RND3_ISCO-MW-5_101615-FILTERED                             | JC6498-11F | Groundwater | Metals                     |
|----------|------------|-------------------------------------------------------------|------------|-------------|----------------------------|
| Accutest | 16-Oct-15  | 2RND3_IW1-BT-2_101615                                       | JC6498-12  | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 10/16/2015 | 2RND3_IW1-BT-2_101615-FILTERED                              | JC6498-12F | Groundwater | Metals                     |
| Accutest | 10/16/2015 | 2RND3_ISCO-MW-2_101615                                      | JC6498-13  | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 10/16/2015 | 2RND3_ISCO-MW-2_101615-FILTERED                             | JC6498-13F | Groundwater | Metals                     |
| Accutest | 10/16/2015 | 2RND3_FB_101615                                             | JC6498-14  | Aqueous     | VOCs, Metals, Sulfate, TDS |
| Accutest | 10/16/2015 | 2RND3_FB_101615-FILTERED                                    | JC6498-14F | Aqueous     | Metals                     |
| Accutest | 10/16/2015 | 2RND3_TRIP BLANK                                            | JC6498-15  | Aqueous     | VOCs                       |
| Accutest | 11/12/2015 | 2RND4_IW1-DR-1_111215                                       | JC8568-1   | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/12/2015 | 2RND4_IW1-DR-1_111215-FILTERED                              | JC8568-1F  | Groundwater | Metals                     |
| Accutest | 11/12/2015 | 2RND4_ISCO-MW-4_111215                                      | JC8568-2   | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/12/2015 | 2RND4_ISCO-MW-4_111215-FILTERED                             | JC8568-2F  | Groundwater | Metals                     |
| Accutest | 11/12/2015 | 2RND4_IW1-BT-2_111215                                       | JC8568-3   | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/12/2015 | 2RND4_IW1-BT-2_111215-FILTERED                              | JC8568-3F  | Groundwater | Metals                     |
| Accutest | 11/12/2015 | 2RND4_MW-14SS_111215                                        | JC8568-4   | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/12/2015 | 2RND4_MW-14SS_111215-FILTERED                               | JC8568-4F  | Groundwater | Metals                     |
| Accutest | 11/12/2015 | 2RND4_MW-14SD_111215, MS/MSD                                | JC8568-5   | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/12/2015 | 2RND4_MW-14SD_111215-FILTERED, MS/MSD                       | JC8568-5F  | Groundwater | Metals                     |
| Accutest | 11/12/2015 | 2RND4_MW-10S_111215                                         | JC8568-6   | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/12/2015 | 2RND4_MW-10S_111215-FILTERED                                | JC8568-6F  | Groundwater | Metals                     |
| Accutest | 11/12/2015 | 2RND4_ISCO-MW-9_111215                                      | JC8568-7   | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/12/2015 | 2RND4_ISCO-MW-9_111215-FILTERED                             | JC8568-7F  | Groundwater | Metals                     |
| Accutest | 11/12/2015 | 2RND4_ISCO-MW-3_111215                                      | JC8568-8   | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/12/2015 | 2RND4_ISCO-MW-3_111215-FILTERED                             | JC8568-8F  | Groundwater | Metals                     |
| Accutest | 11/12/2015 | 2RND4_DUP_111215[2RND4_ISCO-MW-10_111215]                   | JC8568-9   | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/12/2015 | 2RND4_DUP_111215-FILTERED[2RND4_ISCO-MW-10_111215-FILTERED] | JC8568-9F  | Groundwater | Metals                     |
| Accutest | 11/12/2015 | 2RND4_FB_111215                                             | JC8568-10  | Aqueous     | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/12/2015 | 2RND4_FB_111215-FILTERED                                    | JC8568-10F | Aqueous     | Metals                     |
| Accutest | 11/13/2015 | 2RND4_MW-11I_111315                                         | JC8568-11  | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/13/2015 | 2RND4_MW-11I_111315-FILTERED                                | JC8568-11F | Groundwater | Metals                     |
| Accutest | 11/13/2015 | 2RND4_ISCO-MW-8_111315                                      | JC8568-12  | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/13/2015 | 2RND4_ISCO-MW-8_111315-FILTERED                             | JC8568-12F | Groundwater | Metals                     |
| Accutest | 11/13/2015 | 2RND4_ISCO-MW-7_111315                                      | JC8568-13  | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/13/2015 | 2RND4_ISCO-MW-7_111315-FILTERED                             | JC8568-13F | Groundwater | Metals                     |
| Accutest | 11/13/2015 | 2RND4_MW-5I_111315                                          | JC8568-14  | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/13/2015 | 2RND4_MW-5I_111315-FILTERED                                 | JC8568-14F | Groundwater | Metals                     |
| Accutest | 11/13/2015 | 2RND4_PZ-1S_111315                                          | JC8568-15  | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/13/2015 | 2RND4_PZ-1S_111315-FILTERED                                 | JC8568-15F | Groundwater | Metals                     |
| Accutest | 11/13/2015 | 2RND4_ISCO-MW-2_111315                                      | JC8568-16  | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/13/2015 | 2RND4_ISCO-MW-2_111315-FILTERED                             | JC8568-16F | Groundwater | Metals                     |
| Accutest | 11/13/2015 | 2RND4_ISCO-MW-1_111315                                      | JC8568-17  | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/13/2015 | 2RND4_ISCO-MW-1_111315-FILTERED                             | JC8568-17F | Groundwater | Metals                     |
| Accutest | 11/13/2015 | 2RND4_ISCO-MW-5_111315                                      | JC8568-18  | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/13/2015 | 2RND4_ISCO-MW-5_111315-FILTERED                             | JC8568-18F | Groundwater | Metals                     |
| Accutest | 11/13/2015 | 2RND4_ISCO-MW-6_111315                                      | JC8568-19  | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/13/2015 | 2RND4_ISCO-MW-6_111315-FILTERED                             | JC8568-19F | Groundwater | Metals                     |
| Accutest | 11/13/2015 | 2RND4_FB_111315                                             | JC8568-20  | Aqueous     | VOCs, Metals, Sulfate, TDS |
| Accutest | 11/13/2015 | 2RND4_FB_111315-FILTERED                                    | JC8568-20F | Aqueous     | Metals                     |
| Accutest | 11/13/2015 | 2RND4_TRIP BLANK                                            | JC8568-21  | Aqueous     | VOCs                       |
| Note:    |            |                                                             |            |             |                            |

Note:

Accutest indicates Accutest Laboratories of Dayton, New Jersey.

VOCs indicates volatile organic compounds.

TDS indicates total dissolved solids.

MS/MSD indicates matrix spike/matrix spike duplicate.

DUP indicates field duplicate.

The sample identification utilized for field duplicate is shown in brackets.

TB indicates trip blank.

FB indicates field blank.



#### Table 3 - O'Brien & Gere data validation approach using NJDEP data validation guidelines

Data evaluation is based on QA/QC criteria established the methods utilized by the laboratory and quality plans developed for the project.

The NJDEP data validation guidance applies to data generated using USEPA CLP methods. This project was not analyzed using CLP methods. Therefore, data affected by excursions from criteria presented in the methods and quality plan are qualified using professional judgment with some consideration of the general guidance provided in the following documents:

- New Jersey Department of Environmental Protection (NJDEP). 2001a. Standard Operating Procedures for the Quality
   Assurance Data Validation of Analytical Deliverables TCL- Organics (based on the USEPA SOW OLM04.2 with Revisions),
   SOP No. 5.A.13. Trenton, New Jersey; and
- NJDEP. 2001b. Standard Operating Procedure (SOP) for Analytical Data Validation of Target Analyte List (TAL) Inorganics, SOP No. 5.A.2. Trenton, New Jersey.

The following qualifiers are applied to data:

not severe enough to warrant data rejection.

""U" Indicates that the analyte was analyzed for, but was not detected.

"J" Indicates that the result should be considered to be an estimated value. This qualifier is used when the data validation process identifies a deficiency in the data generation process.

"UJ" Indicates that the sample-specific reporting limit for the analyte in this sample should be considered approximate. This qualifier is used when the data validation process identifies a deficiency in the data generation process.

"R" Indicates that the reporting limit or sample result has been determined to be unusable due to a major deficiency in the data generation process. The data should not be used for any qualitative or quantitative purposes.

In addition, in accordance with the NJDEP guidance, the following single word descriptors were added to analyte results if the reported analyte required a quality assurance action.

# reported analyte required a quality assurance action. Qualify (Q) - used when the results of a given analyte in a sample do not meet all QA/QC criteria but the deficiencies are

- Negate (N) used when the presence of a given analyte in a sample can be attributed to the laboratory/field introduced contamination.
- Reject (R) used when the results of a given analyte in a sample do not meet all QA/QC criteria so that the qualitative presence and/or quantitation of that analyte in the sample cannot be determined with any degree of confidence.

Footnotes are applied to each qualifier to define the type of excursion that affected the sample result, resulting in the qualification of the data, as listed on this table.

Data are evaluated using the QA/QC criteria (including holding times and calibration) established in the applicable Quality Assurance Project Plan (QAPP), analytical methods and laboratory established control limits. Since the NJDEP validation guidelines apply to data generated using CLP methods, the application of these validation guidelines is modified to reflect method requirements, where applicable, since non-CLP methods are used in the analysis of samples.

A full QA/QC review is performed for 10 percent of the aqueous and solid samples, including a review of data summary forms and raw analytical data that were provided by the laboratory in the data package documentation. Partial review is performed for the remaining environmental samples submitted for data validation for this sampling event. Partial review consists of a review of the data summary forms. During the partial validation, only summary QA/QC forms are evaluated. The forms and the information contained on the forms are not evaluated for accuracy or completeness during the partial validation process.

The validation approach taken by O'Brien & Gere is a conservative one; qualifiers are applied to sample data to indicate both major and minor excursions. In this way, data associated with any type of excursion are identified to the data user. Major excursions will result in data being rejected, indicating that the data are considered unusable for either quantitative or qualitative purposes. Minor excursions will result in sample data being qualified as approximate that are otherwise usable for quantitative or qualitative purposes.

Excursions are subdivided into excursions that are within the laboratory's control and those that are out of the laboratory's control. Excursions involving laboratory control sample recovery, calibration response, method blank excursions, low or high spike recovery due to inaccurate spiking solutions or poor instrument response, holding times, interpretation errors, and quantitation errors are within the control of the laboratory. Excursions resulting from matrix spike recovery, serial dilution

# General Validation Approach

OBG | THERE'S A WAY

| Table 3 - O'Brien & Ger                                  | re data validation approach using NJDEP data validation guidelines                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                          | recovery, surrogate, and internal standard performance due to matrix interference from the matrix of the samples are examples of those excursions that are not within the laboratory's control if the laboratory has followed proper method control procedures, including performing appropriate cleanup techniques.                                                                                                                                                                                                                        |
| Parameter Type                                           | Approach in Applying Data Validation Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample collection<br>information-<br>Cooler Temperature  | Results for samples submitted for organic and inorganic analyses impacted by cooler temperatures of greater than 10°C are noted in the report.* Qualifiers are not applied to data.                                                                                                                                                                                                                                                                                                                                                         |
| Sample collection<br>information-<br>Percent Solids      | Results for samples submitted for organic and inorganic analyses that are impacted by percent solids of 50 percent are noted in the report.* Qualifiers are not applied to data.                                                                                                                                                                                                                                                                                                                                                            |
|                                                          | VOC target analytes are evaluated using the criteria of 20 percent relative standard deviation (%RSD) or correlation coefficient of 0.990 for initial calibration curves.                                                                                                                                                                                                                                                                                                                                                                   |
| VOCs by USEPA                                            | Calibration verifications are evaluated using a criterion of 20 percent difference (%D) for target analytes.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Method 8260C<br>Calibration Evaluation                   | Initial calibrations and calibration verifications are also evaluated using the response factor (RF) criteria described in the method Table 4 for Method 8260C. The following exceptions are allowed: RFs ≥ 0.010 for poor purging target analytes such as ketones, acetonitrile, acrolein, propionitrile, vinyl acetate, 1,4-dioxane, alcohols, tetrahydrofuran, and cyclohexanone. Other target analytes not listed on Table 4 - RFs ≥ 0.050. ICV recoveries are evaluated using laboratory control limits if available or 70 to 130%.    |
| SVOCs by USEPA<br>Method 8270C<br>Calibration Evaluation | SVOC target analytes are evaluated using the criteria of 15 %RSD or correlation coefficient criteria of 0.990 for initial calibration curves. Calibration verifications are evaluated using a criterion of 20%D for all target compounds. Initial calibrations and calibration verifications were also evaluated using the criterion of a RF value of greater than or equal to a value of 0.05 for the target analytes. If analyzed, the second-source standard (ICV) is evaluated using laboratory control limits or 70% to 130% recovery. |
|                                                          | Due to any relative standard deviation (RSD) calibration excursions, detected results for analytes in samples associated with the calibration are qualified as approximate (J). Non-detected results associated with RSD excursions may be qualified as approximate (UJ) based on professional judgment.                                                                                                                                                                                                                                    |
| Calibration Actions for                                  | If the RSD calibration excursion is greater than 90, detected results for analytes in samples associated with the calibration are qualified as approximate (J) and non-detected results may be rejected (R), applying professional judgment.                                                                                                                                                                                                                                                                                                |
| VOCs (8260C) and<br>SVOCs (8270C)                        | Due to any %D calibration verification excursions, detected and non-detected results for analytes in samples associated with the calibration are qualified as approximate (J, UJ).                                                                                                                                                                                                                                                                                                                                                          |
|                                                          | If the %D calibration excursion is greater than 90, detected results for analytes in samples associated with the calibration are qualified as approximate (J) and non-detected results may be <u>rejected (R)</u> , applying professional judgment.                                                                                                                                                                                                                                                                                         |
|                                                          | For response factor excursions, detected results are qualified as approximate (J) and non-detected results are rejected (R). For 8260C, ketones and poor purging target analytes listed in Table 4 with RFs ≥ 0.010 and less than 0.100 results, data will be qualified as approximate (UJ, J).                                                                                                                                                                                                                                             |
|                                                          | For initial calibration verifications (ICV) excursions, detected and non-detected results for analytes in samples associated with the calibration are qualified as approximate (J, UJ). The response direction and detection of target analytes in associated sample may be considered in applying qualifiers.                                                                                                                                                                                                                              |
| PCBs by USEPA<br>Method 8082                             | PCB target analytes are evaluated using the criteria of 20 %RSD or correlation coefficient of 0.990 for initial calibration curves.                                                                                                                                                                                                                                                                                                                                                                                                         |
| Calibration Evaluation                                   | Calibration verifications are evaluated using a criterion of 15 %D for target analytes.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                                                               | ICV recoveries are avaluated using laboratory control limits if a validable as 70 to 4200/                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               | ICV recoveries are evaluated using laboratory control limits if available or 70 to 130%.                                                                                                                                                                                                                                                                                                                 |
| Pesticides by USEPA<br>Method 8081A<br>Calibration Evaluation | Pesticide target analytes are evaluated using the criteria of 20 %RSD or correlation coefficient of 0.990 for initial calibration curves.  Calibration verifications are evaluated using a criterion of 20 %D for the target analytes.  ICV recoveries are evaluated using laboratory control limits if available or 70 to 130%.                                                                         |
| Herbicides by USEPA<br>Method 8151A<br>Calibration Evaluation | Herbicide target analytes are evaluated using the criteria of 20 %RSD or correlation coefficient of 0.990 for initial calibration curves.  Calibration verifications are evaluated using a criterion of 20 %D for the target analytes.  ICV recoveries are evaluated using laboratory control limits if available or 70 to 130%.                                                                         |
| Calibration Actions for                                       | Due to any relative standard deviation (RSD) calibration excursions, detected results for analytes in samples associated with the calibration are qualified as approximate (J). Non-detected results associated with RSD excursions may be qualified as approximate (UJ) based on professional judgment.                                                                                                 |
| PCB, Pesticides and<br>Herbicides GC<br>analyses              | Due to any %D calibration verification excursions, detected and non-detected results for analytes in samples associated with the calibration are qualified as approximate (J, UJ).                                                                                                                                                                                                                       |
| anaryses                                                      | For initial calibration verifications (ICV) excursions, detected and non-detected results for analytes in samples associated with the calibration are qualified as approximate (J, UJ). The response direction and detection of target analytes in associated sample may be considered in applying qualifiers.                                                                                           |
| Calibration Data- GC by<br>USEPA Method 8011                  | Data are evaluated using the criteria of 20%RSD for initial calibrations, or correlation coefficient of 0.990 for calibration curves, and 20%D for the calibration verifications. Results are qualified for primary column calibration excursions. The second-source standard (ICV) is evaluated using laboratory control limits or 70% to 130% recovery.                                                |
| Organic Multi-results                                         | When two results are reported, due to re-preparation or for dilution analyses, both sets of results are evaluated during the validation process. Based on the evaluation of the associated quality control data, the results reflecting the higher quality data are reported.                                                                                                                            |
|                                                               | Laboratory established control limits are used to assess duplicate, surrogate, MS/MSD, and LCS data.                                                                                                                                                                                                                                                                                                     |
|                                                               | In the case that excursions are identified in more than one quality control sample of the same matrix within one sample delivery group, samples are batched according to sample preparation or analysis date and qualified accordingly.                                                                                                                                                                  |
| General Organic                                               | For surrogate recoveries are not within laboratory control limits:  If two or more surrogate recoveries are outside of laboratory control limits for SVOC analysis, results are rejected (R, 81) unless matrix interferences are confirmed by re-extraction and reanalysis.  If one or more surrogate recoveries are not within laboratory control limits for PCB, results are qualified as UJ, J, 81B). |
| Surrogate, MS/MSD,<br>LCS, Duplicate Data                     | If LCS percent recoveries are less than laboratory control limits but greater than ten percent, non-detected and detected results are qualified as approximate (UJ, J, 88) to indicate minor excursions.                                                                                                                                                                                                 |
|                                                               | If LCS percent recoveries are greater than laboratory control limits, detected results are qualified as approximate (J, 88) to indicate minor excursions.                                                                                                                                                                                                                                                |
|                                                               | If LCS percent recoveries are outside of laboratory control limits and less than ten percent, detected results are qualified as approximate (J, 88) and non-detected results are qualified as rejected (R, 88A) to indicate major excursions.                                                                                                                                                            |
|                                                               | If RPDs for MSDs or duplicates are outside of laboratory control limits, detected results are qualified as approximate (J, 89A) to indicate minor excursions.                                                                                                                                                                                                                                            |
| Organic MS/MSD Data                                           | Qualification of organic data for MS/MSD analyses is performed only when both MS and MSD percent recoveries are outside of laboratory control limits with zero percent recovery.                                                                                                                                                                                                                         |
|                                                               | Organic data are rejected (R, 87) to indicate major excursions in the case that both MS/MSD recoveries are zero.                                                                                                                                                                                                                                                                                         |
| Sample dilution Data                                          | Qualification of data is not performed if MS/MSD or surrogate recoveries are outside of laboratory control limits due to sample dilution.                                                                                                                                                                                                                                                                |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                          |

| MS/MSD and Field<br>Duplicate Data –<br>Organic Data                                                  | Qualification of data associated with MS/MSD or field duplicate excursions is limited to the un-spiked sample or the field duplicate pair, respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Field Duplicate Data                                                                                  | Field duplicate data are evaluated against relative percent difference (RPD) criteria of less than 50 percent for aqueous samples and less than 100 percent for soils when results are greater than five times the QL. When sample results for field duplicate pairs are less than five times the QL, the data are evaluated using control limits of plus or minus two times the QL for soils. If RPDs for field duplicates are outside of laboratory control limits, detected and non-detected results are qualified as approximate (UJ, J, 90) to indicate minor excursions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Internal Standard -                                                                                   | Internal standard recoveries are evaluated using control limits of within 50% of the lower standard area and up to 100% of the upper standard area of the associated calibration verification standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Organic Data                                                                                          | Sample results are qualified as approximate (UJ, J, 50) if one internal standard does not meet criteria.  Detected sample results are qualified as approximate (J, 51) if two or more internal standards do not meet criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Internal<br>Standard/Surrogate -<br>Organic Data- Drinking<br>Water methods                           | Non-detected sample results are rejected (R, 51) if two or more internal standards do not meet criteria.  Internal standard recoveries are evaluated using method control limits. Monitor the integrated areas of the quantitation ions of the internal standards and surrogates in all samples, continuing calibration checks, and blanks. These should remain reasonably constant over time. An abrupt change may indicate a matrix effect or an instrument problem. If a cryogenic interface is utilized, it may indicate an inefficient transfer from the trap to the column. These samples must be reanalyzed or a laboratory fortified duplicate sample analyzed to test for matrix effect. A drift of more than 50% in any area is indicative of a loss in sensitivity, and the problem must be found and corrected.  CCV- Determine that the absolute areas of the quantitation ions of the internal standard and surrogates have not decreased by more than 30% from the areas measured in the most recent continuing calibration check, or by more than 50% from the areas measured during initial calibration. If these areas have decreased by more than these amounts, adjustments must be made to restore system sensitivity. |
| Evaluation of Internal<br>Standards for samples<br>(VOCs for USEPA<br>Method 524.2)                   | Internal standard areas of samples are evaluated using the validation control limit of 70 to 130 percent recovery when compared to the calibration verification associated with the samples.  Sample results are qualified as approximate (UJ, J, 50) if one internal standard does not meet criteria.  Detected sample results are qualified as approximate (J, 51) if two or more internal standards do not meet criteria.  Non-detected sample results are rejected (R, 51) if two or more internal standards do not meet criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Evaluation of CCVs<br>(VOCs for USEPA<br>Method 524.2)                                                | Internal standard areas of CCVs are evaluated using the validation control limit of 50 to 100 percent recovery when compared to the initial calibration.  Sample results are qualified as approximate (UJ, J, 50) if one internal standard does not meet criteria.  Detected sample results are qualified as approximate (J, 51) if two or more internal standards do not meet criteria.  Non-detected sample results are rejected (R, 51) if two or more internal standards do not meet criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Evaluation of Initial<br>(ICV) and Calibration<br>Verification (CCV) for<br>Metals by<br>6010B/6020A, | Metals are evaluated using the criteria for ICV and CCV of 90% to 110% of the expected value.  Mercury is evaluated using the criteria for ICV of 90% to 110% of the expected value and 80% to 120% of the expected value for the CCV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mercury by<br>7470A/7471B, and<br>Total Cyanide by<br>9012B                                           | Total Cyanide is evaluated using the criteria for ICV and CCV of 85% to 115% of the expected value.  For analyses utilizing a calibration curve, the correlation coefficient for the first or second order curve must be ≥ 0.995.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Performance<br>Evaluation for ICP-MS<br>by 6020A                                                      | ICP-MS data is evaluated using resolution of mass calibration of within 0.1 μ and the %RSD of less than 15%.  Resolution must be less than 0.9amu of full width at 10% of peak height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Evaluation of Initial (ICV) and Calibration Verification (CCV) for Metals by EPA method 200.7/200.8 and Anions by Method 300.0  Evaluation of Internal  Metals are evaluated using the criteria for ICV and CCV of 95% to 105% for EPA 200.7 and 300.0.  For analyses utilizing a calibration curve, the correlation coefficient for the first or second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| (ICV) and Calibration Verification (CCV) for Metals by EPA method 200.7/200.8 and Anions by Method 300.0  Evaluation of Internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Verification (CCV) for Metals by EPA method 200.7/200.8 and Anions by Method 300.0  Evaluation of Internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| Metals by EPA method 200.7/200.8 and Anions by Method 300.0  For analyses utilizing a calibration curve, the correlation coefficient for the first or second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| 200.7/200.8 and Anions by Method 300.0  Fivaluation of Internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Anions by Method 300.0  For analyses utilizing a calibration curve, the correlation coefficient for the first or second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| Anions by Method 300.0  Evaluation of Internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | order curve must be > 0.005           |
| Evaluation of Internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | order curve must be 2 0.993.          |
| Evaluation of Internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Standards for ICP-MS  Internal standard recoveries are evaluated using control limits of percent relative intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y (%RI) from 60% to 125% of the       |
| by 200.8 response in the calibration blank.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| 5 y 200.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| Internal standard recoveries are evaluated using control limits of percent relative intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y (%RI) from 60% to 125% of the       |
| response in the calibration blank.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| Evaluation of Internal  The intensity of any internal standard must be > 20% or <120% of the intensity of th | rnal standard in the initial          |
| Standards for ICP-MS  The intensity of any internal standard must be >30% or <120% of the intensity of the i | mai standard in the initial           |
| by 6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
| The intensity of the internal standard of the CCB and CCV must agree within ±20% of the i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | intensity of the internal standard in |
| the ICV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                     |
| Motel and Incorpora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| Metal and Inorganic  MS/MSD,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| L Qualification of sample results associated with MS/MSD, laboratory duplicate and field du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uplicate excursions is performed on   |
| Laboratory/Field samples for the same matrix, within the same preparation batch, within the same SDG gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oup.                                  |
| Duplicate, Serial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
| Validation Footnotes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| Footnote Type of Excursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| The value reported is less than or equal to three (3) times the value in the method blank/prepara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| DPFSR to negate the reported value due to probable foreign contamination unrelated to the actu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                     |
| alerted that a reportable quantity of the analyte/compound was detected. The B qualifier must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                     |
| The value reported is greater than three (3) times but less than or equal to 10 times the value in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| and is considered "real". However, the reported value must be quantitatively qualified "J" due to t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the method blank contamination. Th    |
| "B" qualifier alerts the end-user to the presence of this analyte/compound in the method blank.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| The value reported is less than or equal to three (3) times the value in the trip/field blank. It is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · ·                                 |
| reported value as due to probable foreign contamination unrelated to the actual sample. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | end-user, however, is alerted that    |
| reportable quantity of the analyte/compound was detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| The value reported is greater than three (3) times the value in the trip/field blank but less than or e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| and is considered "real". However, the reported value must be quantitatively qualified "J" due to  4A The result was qualified due to negative drift.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | trip/field blank contamination.       |
| 4B The result was qualified as "U" due to blank contamination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| 5 The concentration reported by the laboratory is incorrectly calculated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| 6 The laboratory failed to report the presence of the analyte in the sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| 7 The reported metal value was qualified because the Initial/Continuing Calibration Standard was no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ot within the recovery range.         |
| 8 No CRDL Standard for AA or ICP analysis was performed. Therefore, the analyte affected was reje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ected.                                |
| The consideration of the constant of the const | e CRDL but greater than the MDL.      |
| The reported concentration was quantitatively qualified because the concentration was below the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| The reported concentration was quantitatively qualified because the concentration was below the The concentration is considered estimated since the value obtained is at the low end of the instru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ment performance.                     |
| 9 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ment performance.                     |
| The concentration is considered estimated since the value obtained is at the low end of the instru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                                     |
| The concentration is considered estimated since the value obtained is at the low end of the instruction of t | he recovery range (80-120 percent).   |

| 12  | This non-detected metal analyte had Laboratory Control Sample recovery that fell within the range of 70-79%. The end-user should be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12  | aware of the possibility of false negatives; therefore, this analyte is flagged as estimated (UJ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13  | The reported metal value was qualified because the Laboratory Control Sample recovery fell within the range of 70-79 %. The enc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13  | user should be aware of results that may be biased low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14  | The reported metal value was qualified because the Laboratory Control Sample recovery was greater than 120% but less than or equality than the reported metal value was qualified because the Laboratory Control Sample recovery was greater than 120% but less than or equality than the reported metal value was qualified because the Laboratory Control Sample recovery was greater than 120% but less than or equality than the reported metal value was qualified because the Laboratory Control Sample recovery was greater than 120% but less than or equality than the reported metal value was qualified because the Laboratory Control Sample recovery was greater than 120% but less than or equality than the reported metal value was qualified because the Laboratory Control Sample recovery was greater than 120% but less than or equality the reported metal value was qualified because the reported metal value was presented as the reported was p |
| 14  | to 130%. The end-user should be aware of results that may be biased high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15  | The metal analyte is rejected because the Laboratory Control Sample recovery was less than 70% or greater than 130%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16  | In the Duplicate Sample Analysis for metals, the analyte fell outside the control limits of +20 percent or + CRDL. Therefore, result for th metal was qualified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 17  | This analyte was rejected because the laboratory performed the Duplicate Analysis on a field blank.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18  | The reported metal value was qualified because the spike recovery was greater than 125 percent but less than or equal to 200%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | The reported metal was qualified because both the spike recovery and matrix spike duplicate recovery were outside of the validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18A | control limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19  | The reported metal value was qualified because the spike recovery was between 25 and 74 percent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | The reported metal value was qualified because the spike recovery was less than 25 percent. The reported value actually indicated the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20  | minimum concentration at which the metal was present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | The non-detected metal value was qualified (UJ) because the spike recovery was between 25 and 74 percent. The possibility of a fals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21  | negative exists.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 22  | The non-detected metal value was rejected because the spike recovery was less than 25 percent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23  | The reported metal value was rejected because the laboratory used a field blank for the Sample Spike Analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 24  | There was no Post-Digestion Spike Sample Recovery analysis performed. Therefore, the analyte was rejected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25  | The reported metal value was qualified because the Serial Dilution was not within ten percent of sample concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | The reported metal value was rejected because the laboratory used a field blank for the Serial Dilution analysis or the post-digestion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 26  | spike.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | This metal analyte is rejected because the preparation blank concentration of this analyte is greater than the CRDL and the reporte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 27  | sample concentration is less than ten (10) times the preparation blank concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 28  | The laboratory incorrectly transcribed the raw data onto the Inorganic Analysis Data Sheet form or there are data package issues.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28A | Verification of instrument parameters was performed outside of the required frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 28B | A percent solids issue was detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 200 | The reported metal analyte was rejected because the CRDL standard % Recovery fell less than 30% or was greater than 175%, or another                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 29  | severe CRDL deficiency was detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30  | The non-detected metal value was rejected because the post-digestion spike recovery was less than 25 percent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30A | The metal value was qualified since the post-digestion spike recovery was exceeded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 31  | The reported metal analyte was rejected because the associated Continuing Calibration Blank result was greater than the CRDL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 32  | The reported metal analyte was rejected because this sample is not associated with a Laboratory Control Sample or ICB or CCB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 33  | The laboratory made a transcription error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 33A | A methods comparison issue was detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 34  | The laboratory used an incorrectly associated Preparation Blank.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35  | This analyte is rejected because the laboratory exceeded the holding time for analysis or extraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 35A | Result was qualified due to a holding time excursion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 36  | This metal value was qualified because the CRDL standard was not within the recovery range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 37  | The reported concentration is quantitatively qualified due to calibration deficiencies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 38  | The reported concentration is quantitatively qualified due to surrogate recovery outliers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 39  | The reported concentration is quantitatively qualified because the concentration is below the RL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 33  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40  | The sample holding time to re-extraction and/or reanalysis was exceeded. All positive results including the tentatively identifie compounds are highly qualified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | The mass spectral identification has not been confirmed and the identification of this compound has been rejected. This compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 41  | should now be considered an unknown and the reported concentration is considered an estimated value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | The percent Difference of the calculated values on both columns is greater than 100% and less than 999.9 %. This value is significantly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | greater than the 25 % limits established by the USEPA-Contract Laboratory Program. The extreme variation between the values from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 42  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | two columns is apparently due to instrumentation problems and/or matrix interference. Therefore, the reported concentrations cannot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 42B            | The percent difference from both columns was greater than 40%.                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 42C            | The percent difference from both columns was greater than 70%.                                                                                                                                                                                                                                                                                                                                                                                                        |
| 42D            | The percent difference from both columns was greater than 100% without evidence of matrix interferences being present. The result are rejected (R).                                                                                                                                                                                                                                                                                                                   |
| 42E            | Results were reported at a concentration that was less than the PQL with a %D greater than 50 percent. The PQL is reported ar qualified as non-detected (U).                                                                                                                                                                                                                                                                                                          |
| 43             | The peak retention times of the Aroclors or pesticides detected in the samples are outside of the retention time window established the initial calibration. The identification of the Aroclors or pesticides cannot be verified due to the retention time shift outside of the windows. Retention time shifts are evident in all of the continuing calibration standards and the Performance Evaluation Mixture therefore the usability of the data is questionable. |
| 44             | The laboratory didn't provide the mass spectral proof for the analyte although the quantitation report indicates the presence of the analyte. The presence of this analyte in the sample is considered tentative.                                                                                                                                                                                                                                                     |
| 45             | The non target compound is qualified "J" and considered an estimated value because relative response factors are not determined for non-target compounds.                                                                                                                                                                                                                                                                                                             |
| 46             | The laboratory's call on the non target compound did not match the mass spectra of the compound at the approximate scan number the blank. The laboratory call is incorrect.                                                                                                                                                                                                                                                                                           |
| 47             | The laboratory failed to report this analyte on the Organic Analysis Data Sheet (OADS)                                                                                                                                                                                                                                                                                                                                                                                |
|                | Form even though the TIC, quantitation report and library search indicates a hit for the analyte.                                                                                                                                                                                                                                                                                                                                                                     |
| 48             | The laboratory reported this analyte in the QADS form. However, this analyte was negated in the quantitation report. QA review agrees the mass spectrum is not a good match and therefore, negates the presence of this analyte in the sample.                                                                                                                                                                                                                        |
| 49             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | No library search was submitted for this unknown.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19A            | Results were rejected since correct internal standard was not used.                                                                                                                                                                                                                                                                                                                                                                                                   |
| 50             | One internal standard area in the sample did not meet the QC criteria. Therefore, all compound results using this internal standard f quantitation are quantitatively estimated. (UJ, J)                                                                                                                                                                                                                                                                              |
| 51 (See 84)    | Two or more internal standard areas in the sample did not meet the QC criteria with recoveries of greater than 25%. The detected results of the coveries of greater than 25%.                                                                                                                                                                                                                                                                                         |
| )1 (See 64)    | for the entire fraction for that sample are qualified as approximate (J). The non-detected results are rejected (R).                                                                                                                                                                                                                                                                                                                                                  |
| 52             | The RIC in the raw data indicates a non-target(s) is present. The lab failed to report and provide library search(s) for the non-target(s).                                                                                                                                                                                                                                                                                                                           |
| 53             | The laboratory did not quantify the pesticides present in the sample. The pesticide was confirmed on a second column. Quantitation the peaks revealed that the value is above the CRQL.                                                                                                                                                                                                                                                                               |
| 54             | The lab failed to report this analyte although it was found in both columns and is within the retention times of both columns for the analyte.                                                                                                                                                                                                                                                                                                                        |
| 55             | The retention time window for this analyte overlaps with the retention time window of another analyte. The identity is indistinguishab                                                                                                                                                                                                                                                                                                                                |
|                | and therefore tentative.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 56             | The laboratory reported concentration does not agree with QA reviewer's calculated concentration.                                                                                                                                                                                                                                                                                                                                                                     |
| 57             | The compound exceeded the calibration range of the instrument and is indicated with the "E" qualifier.                                                                                                                                                                                                                                                                                                                                                                |
| 58             | The compound is a suspected Aldol condensation product and is flagged with the "A" qualifier.                                                                                                                                                                                                                                                                                                                                                                         |
| 59             | The laboratory was required to dilute the samples to bring the peaks onto scale.                                                                                                                                                                                                                                                                                                                                                                                      |
| 60             | This sample was diluted prior to analysis. The value reported prior to the dilution correction is less than three (3) times the value in the method blank. It is the policy of NJDEP-DPFSR to negate the reported value due to probable foreign laborato contamination unrelated to the actual sample. The end-user is alerted that a reportable quantity of the analyte was detected.                                                                                |
| 61             | This non-target compound was detected as a target compound in another analytical fraction. Therefore, the presence of th compound as a non-target analyte is negated.                                                                                                                                                                                                                                                                                                 |
| 52             | This sample was diluted prior to analysis. The value reported prior to the dilution correction is greater than three (3) times the value the method blank and is considered "real". However, the reported value must be quantitatively qualified "J" due to method bla contamination. The "B" qualifier alerts the end-user to the presence of this analyte in the method blank.                                                                                      |
| 52A            | Results are rejected due to a severe blank analysis excursion.                                                                                                                                                                                                                                                                                                                                                                                                        |
| 52B            | Results are qualified due to a blank analysis excursion.                                                                                                                                                                                                                                                                                                                                                                                                              |
| 53             | The results are rejected because the initial calibration, continuing calibration or internal standard was not performed using the proper sequence, concentration, matrix, or internal standards.                                                                                                                                                                                                                                                                      |
| 53A            | Results are rejected due to a severe pesticide/Aroclor analysis issue.                                                                                                                                                                                                                                                                                                                                                                                                |
| 53B            | Results are negated due to a blank analysis excursion.                                                                                                                                                                                                                                                                                                                                                                                                                |
| 53C            | Results are qualified due to a posticide/Aroclor analysis issue.                                                                                                                                                                                                                                                                                                                                                                                                      |
| 64             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| J <del>4</del> | The results are rejected because the D of the single component pesticide and/or surrogate in the PEM(s) is greater than 25%.                                                                                                                                                                                                                                                                                                                                          |

| Table 3 - O'B | rien & Gere data validation approach using NJDEP data validation guidelines                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 65            | The results are rejected because of resolution, scaling, or retention time issues.                                                          |
| 65A           | Results are qualified due to scaling, or calibration issues.                                                                                |
| 66            | The result is rejected due to retention time deficiencies.                                                                                  |
| 67            | The result is qualified because the DDT and/or Endrin breakdown was greater than 20%.                                                       |
|               | The result is qualified because the combined DDT/Endrin breakdown is greater than                                                           |
| 68            | 30%.                                                                                                                                        |
| 69            | The results are rejected because GPC cleanup was not performed on the sample extract.                                                       |
| 70            | The results are rejected because florisil cleanup was not performed on the sample extract.                                                  |
| 71            | The results are rejected due to GPC calibration or analysis deficiencies.                                                                   |
|               | The results are rejected because the florisil cartridge check yielded unacceptable percent recoveries or was not performed                  |
| 72            | properly.                                                                                                                                   |
| 73            | The sample holding time was exceeded by greater than ten days. The sample results are rejected.                                             |
|               | The GC/MS Instrument Performance Check Solution (IPCS) failed acceptance criteria or was not performed. The associated sample               |
| 74            | results are rejected.                                                                                                                       |
| 74A           | The results are qualified due to IPCS time-of-analysis excursions.                                                                          |
|               | Three or more analytes in the initial calibration or continuing calibration failed to meet acceptance criteria. The associated sample       |
| 75            | results are rejected.                                                                                                                       |
|               | The results in the fraction are rejected because the response factor in the initial and/or continuing calibration is less than 0.01 or does |
| 76            | not meet the project requirement.                                                                                                           |
| 77            | The results in the fraction are rejected because the %RSD and/or %D is greater than 40% (or in the case of %D, less than - 40%).            |
|               | The positive result is qualified because the RRF of the compound (with no %RSD or %D) is less than 0.01 or does not meet the                |
| 78            | project requirement.                                                                                                                        |
| 79            | The non-detect result is rejected because the RRF of the compound (with no %RSD or %D) is less than 0.01.                                   |
|               | Five or more analytes in the initial calibration or continuing calibration failed to meet %RSD or %D and/or RRF acceptance criteria.        |
| 80            | The associated sample results are rejected.                                                                                                 |
| 80A           | Results are rejected since the continuing calibration was not performed properly.                                                           |
| 81            | Sample results for the fraction are rejected because the % recovery of two or more SMCs (or surrogates) failed to meet criteria.            |
| 81A           | Results are rejected due to severe surrogate analysis excursions.                                                                           |
| 81B           | Results are qualified due to surrogate analysis excursion.                                                                                  |
|               | Sample results for the fraction are rejected because the %recovery of one or more SMCs (or surrogates) in the associated method             |
| 82            | blank failed to meet criteria.                                                                                                              |
|               | Sample results for the fraction are rejected because the retention time of one or more internal standards deviated by more than +/-30       |
| 83            | seconds from the retention time of the corresponding internal standard in the associated calibration standard.                              |
|               | Two or more internal standard areas in the sample did not meet the QC criteria with recoveries of less than 25%. The detected               |
| 84            | results and non-detected results are rejected (R).                                                                                          |
| 84A           | Results are qualified due to sulfur cleanup issue.                                                                                          |
| 84B           | Results are qualified due to internal standard failure.                                                                                     |
|               | Sample results for the fraction are rejected because sulfur was present in the sample and sulfur cleanup was not performed or performed     |
| 85            | properly.                                                                                                                                   |
| 86            | Results are rejected due to failure to submit manual integration technique.                                                                 |
| 87            | Results are rejected or qualified due to zero matrix spike/ matrix spike duplicate recoveries.                                              |
| 88            | Results are qualified due to laboratory control sample excursions.                                                                          |
| 88A           | Results are rejected due to laboratory control sample recoveries of less than ten percent.                                                  |
| 89            | Detected organic results are qualified due to zero matrix spike/matrix spike duplicate recoveries.                                          |
| 89A           | Organic results are qualified due to matrix spike/matrix spike duplicate precision excursions.                                              |
| 90            | Results are qualified due to field duplicate excursions. (UJ, J)                                                                            |
| 91            | Results are qualified due to calibration excursions.                                                                                        |
| 92            | Results are rejected due to significant canister pressure differences.                                                                      |
| 93            | Results are rejected due to significant canister pressure differences.  Results are rejected since SIM was utilized.                        |
| 94            | Results are rejected since a separate MDL study was not performed for each instrument.                                                      |
| 95            | Results are qualified due to analysis excursions.                                                                                           |
| 96            | Results are qualified due to a sample collection excursion.                                                                                 |
| 96A           | Results are rejected due to a sample collection excursion.  Results are rejected due to a sample collection excursion.                      |
| JUM           | nesalis are rejected due to a sample collection excursion.                                                                                  |

| 97             | Results are qualified due to sample preparation excursion.                                                                                                        |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 98             | The reported hexavalent chromium result was qualified because the post verification spike was greater than 115%.                                                  |
| 99             | The reported hexavalent chromium result was qualified because the post verification spike was less than 85%                                                       |
| 100            | The non-detected hexavalent chromium result was qualified (UJ) because the post verification spike was less than 85%. The possibility of a false negative exists. |
| 101            | The reported hexavalent chromium result was qualified because the pre-digestion spike recovery was less than 75%.                                                 |
| 102            | The reported hexavalent chromium result was qualified because the pre-digestion spike recovery was greater than 125%.                                             |
| 103            | The non-detected hexavalent chromium result was qualified because the pre-digestion spike recovery was less than 75%. The possibility of a false negative exists. |
| 104            | Results are qualified due to sample preservation excursion.                                                                                                       |
| * Indicates th | nat NJDEP data validation guidelines do not address this situation; therefore, validation qualifiers are not applied to data.                                     |

| QA/QC Term                                                                      | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quantitation limit                                                              | The level above which numerical results may be obtained with a specified degree of confidence; the minimum concentration of an analyte in a specific matrix that can be identified and quantified above the method detection limit and within specified limits of precision and bias during routine analytical operating conditions.                                                                                                                                                                   |
| Method detection limit                                                          | The minimum concentration of an analyte that undergoes preparation similar to the environmental samples and can be reported with a stated level of confidence that the analyte concentration is greater than zero.                                                                                                                                                                                                                                                                                     |
| Instrument detection limit                                                      | The lowest concentration of a metal target analyte that, when directly inputted and processed on a specific analytical instrument, produces a signal/response that is statistically distinct from the signal/response arising from equipment "noise" alone.                                                                                                                                                                                                                                            |
| Gas chromatography/mass<br>spectrometry (GC/MS) instrument<br>performance check | Performed to verify mass resolution, identification, and to some degree, instrument sensitivity. These criteria are not sample specific; conformance is determined using standard materials.                                                                                                                                                                                                                                                                                                           |
| Calibration                                                                     | Compliance requirements for satisfactory instrument calibration are established to verify that the instrument capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of analysis and calibration verifications document satisfactory maintenance and adjustment of the instrument on a day-to-day basis.                                                                                        |
| Relative Response Factor                                                        | A measure of the relative mass spectral response of an analyte compared to its internal standard. Relative Response Factors are determined by analysis of standards and are used in the calculation of concentrations or analytes in samples.                                                                                                                                                                                                                                                          |
| Relative standard deviation                                                     | The standard deviation divided by the mean; a unit-free measure of variability.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Correlation coefficient                                                         | A measure of the strength of the relationship between two variables.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Relative Percent Difference                                                     | Used to compare two values; the relative percent difference is based on the mean of the two values, and is reported as an absolute value, i.e., always expressed as a positive number or zero.                                                                                                                                                                                                                                                                                                         |
| Percent Difference                                                              | Used to compare two values; the percent difference indicates both the direction and the magnitude of the comparison, i.e., the percent difference may be either negative, positive, or zero.                                                                                                                                                                                                                                                                                                           |
| Percent Recovery                                                                | The act of determining whether or not the methodology measures all of the target analytes contained in a sample.                                                                                                                                                                                                                                                                                                                                                                                       |
| Calibration blank                                                               | Consists of acids and reagent water used to prepare metal samples for analysis. This type of blank is analyzed to evaluate whether contamination is occurring during the preparation and analysis of the sample.                                                                                                                                                                                                                                                                                       |
| Method blank                                                                    | A water or soil blank that undergoes the preparation procedures applied to a sample (i.e., extraction, digestion, clean-up). These samples are analyzed to examine whether sample preparation, clean-up, and analysis techniques result in sample contamination.                                                                                                                                                                                                                                       |
| Field/equipment                                                                 | Collected and submitted for laboratory analysis, where appropriate. Field/equipment blanks are handled in the same manner as environmental samples. Equipment/field blanks are analyzed to assess contamination introduced during field sampling procedures.                                                                                                                                                                                                                                           |
| Trip blank                                                                      | Consist of samples of analyte-free water that have undergone shipment from the sampling site to the laboratory in coolers with the environmental samples submitted for volatile organic compound (VOC) analysis Trip blanks will be analyzed for VOCs to determine if contamination has taken place during sample handling and/or shipment. Trip blanks will be utilized at a frequency of one each per cooler sent to the laboratory for VOC analysis.                                                |
| Internal standards performance                                                  | Compounds not found in environmental samples which are spiked into samples and quality control samples a the time of sample preparation for organic analyses. Internal standards must meet retention time and recovery criteria specified in the analytical method. Internal standards are used as the basis for quantitation of the target analytes.                                                                                                                                                  |
| Surrogate recovery                                                              | Compounds similar in nature to the target analytes but not expected to be detected in the environmental media which are spiked into environmental samples, blanks, and quality control samples prior to sample preparation for organic analyses. Surrogates are used to evaluate analytical efficiency by measuring recovery                                                                                                                                                                           |
| Laboratory control sample<br>Matrix spike blank analyses                        | Standard solutions that consist of known concentrations of the target analytes spiked into laboratory analyte-free water or sand. They are prepared or purchased from a certified manufacturer from a source independent from the calibration standards to provide an independent verification of the calibration procedure. They are prepared and analyzed following the same procedures employed for environmental sample analysis to assess method accuracy independently of sample matrix effects. |
| Laboratory duplicate                                                            | Two or more representative portions taken from one homogeneous sample by the analyst and analyzed in the same laboratory.                                                                                                                                                                                                                                                                                                                                                                              |
| Matrix                                                                          | The material of which the sample is composed or the substrate containing the analyte of interest, such as drinking water, waste water, air, soil/sediment, biological material.                                                                                                                                                                                                                                                                                                                        |
| Matrix Spike (MS)                                                               | An aliquot of a matrix (water or soil) fortified (spiked) with known quantities of specific target analytes and subjected to the entire analytical procedure in order to indicate the appropriateness of the method for the matrix by measuring recovery.                                                                                                                                                                                                                                              |
| Matrix spike duplicate (MSD)                                                    | A second aliquot of the same matrix as the matrix spike that is spiked in order to determine the precision of the method.                                                                                                                                                                                                                                                                                                                                                                              |

| Table 4. Laboratory QA/QC analyses definitions. |                                                                                                                                                                                                                                                  |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Retention time                                  | The time a target analyte is retained on a GC column before elution. The identification of a target analyte is dependent on a target compound's retention time falling within the specified retention time window established for that compound. |  |
| Relative retention time                         | The ratio of the retention time of a compound to that of a standard.                                                                                                                                                                             |  |
| Source O'Brien & Gere                           |                                                                                                                                                                                                                                                  |  |